Your browser doesn't support javascript.
loading
Multi-contrast atherosclerosis characterization (MATCH) of carotid plaque with a single 5-min scan: technical development and clinical feasibility.
J Cardiovasc Magn Reson ; 16: 53, 2014 Jul 25.
Article in En | MEDLINE | ID: mdl-25184808
BACKGROUND: Multi-contrast weighted imaging is a commonly used cardiovascular magnetic resonance (CMR) protocol for characterization of carotid plaque composition. However, this approach is limited in several aspects including low slice resolution, long scan time, image mis-registration, and complex image interpretation. In this work, a 3D CMR technique, named Multi-contrast Atherosclerosis Characterization (MATCH), was developed to mitigate the above limitations. METHODS: MATCH employs a 3D spoiled segmented fast low angle shot readout to acquire data with three different contrast weightings in an interleaved fashion. The inherently co-registered image sets, hyper T1-weighting, gray blood, and T2-weighting, are used to detect intra-plaque hemorrhage (IPH), calcification (CA), lipid-rich necrotic core (LRNC), and loose-matrix (LM). The MATCH sequence was optimized by computer simulations and testing on four healthy volunteers and then evaluated in a pilot study of six patients with carotid plaque, using the conventional multi-contrast protocol as a reference. RESULTS: On MATCH images, the major plaque components were easy to identify. Spatial co-registration between the three image sets with MATCH was particularly helpful for the reviewer to discern co-existent components in an image and appreciate their spatial relation. Based on Cohen's kappa tests, moderate to excellent agreement in the image-based or artery-based component detection between the two protocols was obtained for LRNC, IPH, CA, and LM, respectively. Compared with the conventional multi-contrast protocol, the MATCH protocol yield significantly higher signal contrast ratio for IPH (3.1±1.3 vs. 0.4±0.3, p<0.001) and CA (1.6±1.5 vs. 0.7±0.6, p=0.012) with respect to the vessel wall. CONCLUSIONS: To the best of our knowledge, the proposed MATCH sequence is the first 3D CMR technique that acquires spatially co-registered multi-contrast image sets in a single scan for characterization of carotid plaque composition. Our pilot clinical study suggests that the MATCH-based protocol may outperform the conventional multi-contrast protocol in several respects. With further technical improvements and large-scale clinical validation, MATCH has the potential to become a CMR method for assessing the risk of plaque disruption in a clinical workup.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Image Interpretation, Computer-Assisted / Carotid Arteries / Carotid Stenosis / Magnetic Resonance Angiography / Contrast Media / Plaque, Atherosclerotic Type of study: Diagnostic_studies / Evaluation_studies / Guideline / Prognostic_studies Limits: Aged / Humans / Male / Middle aged Language: En Journal: J Cardiovasc Magn Reson Journal subject: ANGIOLOGIA / CARDIOLOGIA / DIAGNOSTICO POR IMAGEM Year: 2014 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Image Interpretation, Computer-Assisted / Carotid Arteries / Carotid Stenosis / Magnetic Resonance Angiography / Contrast Media / Plaque, Atherosclerotic Type of study: Diagnostic_studies / Evaluation_studies / Guideline / Prognostic_studies Limits: Aged / Humans / Male / Middle aged Language: En Journal: J Cardiovasc Magn Reson Journal subject: ANGIOLOGIA / CARDIOLOGIA / DIAGNOSTICO POR IMAGEM Year: 2014 Type: Article