Your browser doesn't support javascript.
loading
Src family kinases differentially influence glioma growth and motility.
Lewis-Tuffin, Laura J; Feathers, Ryan; Hari, Priya; Durand, Nisha; Li, Zhimin; Rodriguez, Fausto J; Bakken, Katie; Carlson, Brett; Schroeder, Mark; Sarkaria, Jann N; Anastasiadis, Panos Z.
Affiliation
  • Lewis-Tuffin LJ; Department of Cancer Cell Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA.
  • Feathers R; Department of Cancer Cell Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA.
  • Hari P; Department of Cancer Cell Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA.
  • Durand N; Department of Cancer Cell Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA.
  • Li Z; Department of Cancer Cell Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA.
  • Rodriguez FJ; Department of Pathology, Johns Hopkins Hospital, 1800 Orleans Street, Baltimore, MD 21231, USA.
  • Bakken K; Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
  • Carlson B; Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
  • Schroeder M; Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
  • Sarkaria JN; Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
  • Anastasiadis PZ; Department of Cancer Cell Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA. Electronic address: panos@mayo.edu.
Mol Oncol ; 9(9): 1783-98, 2015 Nov.
Article in En | MEDLINE | ID: mdl-26105207
ABSTRACT
Src-family kinase (SFK) signaling impacts multiple tumor-related properties, particularly in the context of the brain tumor glioblastoma. Consequently, the pan-SFK inhibitor dasatinib has emerged as a therapeutic strategy, despite physiologic limitations to its effectiveness in the brain. We investigated the importance of individual SFKs (Src, Fyn, Yes, and Lyn) to glioma tumor biology by knocking down individual SFK expression both in culture (LN229, SF767, GBM8) and orthotopic xenograft (GBM8) contexts. We evaluated the effects of these knockdowns on tumor cell proliferation, migration, and motility-related signaling in culture, as well as overall survival in the orthotopic xenograft model. The four SFKs differed significantly in their importance to these properties. In culture, Src, Fyn, and Yes knockdown generally reduced growth and migration and altered motility-related phosphorylation patterns while Lyn knockdown did so to a lesser extent. However the details of these effects varied significantly depending on the cell line in no case were conclusions about the role of a particular SFK applicable to all of the measures or all of the cell types examined. In the orthotopic xenograft model, mice implanted with non-target or Src or Fyn knockdown cells showed no differences in survival. In contrast, mice implanted with Yes knockdown cells had longer survival, associated with reduced tumor cell proliferation. Those implanted with Lyn knockdown cells had shorter survival, associated with higher overall tumor burden. Together, our results suggest that Yes signaling directly affects tumor cell biology in a pro-tumorigenic manner, while Lyn signaling affects interactions between tumor cells and the microenvironment in an anti-tumor manner. In the context of therapeutic targeting of SFKs, these results suggest that pan-SFK inhibitors may not produce the intended therapeutic benefit when Lyn is present.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Brain Neoplasms / Glioblastoma / Src-Family Kinases / Protein Kinase Inhibitors / Dasatinib Limits: Animals / Humans Language: En Journal: Mol Oncol Journal subject: BIOLOGIA MOLECULAR / NEOPLASIAS Year: 2015 Type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Brain Neoplasms / Glioblastoma / Src-Family Kinases / Protein Kinase Inhibitors / Dasatinib Limits: Animals / Humans Language: En Journal: Mol Oncol Journal subject: BIOLOGIA MOLECULAR / NEOPLASIAS Year: 2015 Type: Article Affiliation country: United States