Your browser doesn't support javascript.
loading
Effects of Functional Electrical Stimulation on Denervated Laryngeal Muscle in a Large Animal Model.
Cheetham, Jon; Perkins, Justin D; Jarvis, Jonathan C; Cercone, Marta; Maw, Martin; Hermanson, John W; Mitchell, Lisa M; Piercy, Richard J; Ducharme, Norm G.
Affiliation
  • Cheetham J; Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
  • Perkins JD; Comparative Neuromuscular Disease Laboratory, Royal Veterinary College, London.
  • Jarvis JC; Liverpool John Moores University, Liverpool, UK.
  • Cercone M; Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
  • Maw M; Med-el, Innsbruck, Austria.
  • Hermanson JW; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
  • Mitchell LM; Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
  • Piercy RJ; Comparative Neuromuscular Disease Laboratory, Royal Veterinary College, London.
  • Ducharme NG; Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
Artif Organs ; 39(10): 876-85, 2015 Oct.
Article in En | MEDLINE | ID: mdl-26471139
ABSTRACT
Bilateral vocal fold paralysis (BVCP) is a life-threatening condition that follows injury to the Recurrent Laryngeal nerve (RLn) and denervation of the intrinsic laryngeal musculature. Functional electrical stimulation (FES) enables restoration and control of a wide variety of motor functions impaired by lower motor neuron lesions. Here we evaluate the effects of FES on the sole arytenoid abductor, the posterior cricoarytenoid (PCA) muscle in a large animal model of RLn injury. Ten horses were instrumented with two quadripolar intramuscular electrodes in the left PCA muscle. Following a 12-week denervation period, the PCA was stimulated using a once-daily training session for 8 weeks in seven animals. Three animals were used as unstimulated controls. Denervation produced a significant increase in rheobase (P < 0.001). Electrical stimulation produced a 30% increase in fiber diameter in comparison with the unstimulated control group (33.9 ± 2.6 µm FES+, 23.6 ± 4.2 µm FES-, P = 0.04). A trend toward a decrease in the proportion of type 1 (slow) fibers and an increase in type 2a (fast) fibers was also observed. Despite these changes, improvement in PCA function at rest was not observed. These data suggest that electrical stimulation using a relatively conservative set of stimulation parameters can reverse the muscle fiber atrophy produced by complete denervation while avoiding a shift to a slow (type 1) fiber type.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Electric Stimulation Therapy / Laryngeal Muscles Limits: Animals Language: En Journal: Artif Organs Year: 2015 Type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Electric Stimulation Therapy / Laryngeal Muscles Limits: Animals Language: En Journal: Artif Organs Year: 2015 Type: Article Affiliation country: United States