Your browser doesn't support javascript.
loading
Fish-Oil-Derived DHA-mediated Enhancement of Apoptosis in Acute Lymphoblastic Leukemia Cells is Associated with Accumulation of p53, Downregulation of Survivin, and Caspase-3 Activation.
Sam, Mohammad Reza; Esmaeillou, Mohammad; Shokrgozar, Mohammad Ali.
Affiliation
  • Sam MR; a Department of Cellular and Molecular Biotechnology , Institute of Biotechnology, Urmia University , Urmia , Iran.
  • Esmaeillou M; a Department of Cellular and Molecular Biotechnology , Institute of Biotechnology, Urmia University , Urmia , Iran.
  • Shokrgozar MA; b National Cell Bank of Iran , Pasteur Institute of Iran , Tehran , Iran.
Nutr Cancer ; 69(1): 64-73, 2017 01.
Article in En | MEDLINE | ID: mdl-27880058
In acute lymphoblastic leukemia (ALL), resistance to chemotherapy is associated with inactivation of p53 and upregulation of survivin. Thus, targeting the p53 and survivin expression may provide an attractive strategy for ALL treatment. It has been shown that fish-oil-derived docosahexaenoic acid (DHA) activates several antitumorigenic mechanisms in tumor cells, but little is known regarding the role of DHA on modulating p53 and survivin expression in ALL cells. In this study, we investigated the alterations of the p53 and survivin expression and induction of apoptosis in DHA-treated Molt-4 cells that serve as a model for ALL cells. Molt-4 cells were treated with 50, 100, 150, and 200 µM DHA after which cell proliferation, survivin mRNA and protein levels, p53 protein level, caspase-3 activation, and apoptotic rates were evaluated by different cellular and molecular techniques. After 48- and 72-h treatments with DHA at concentrations ranging from 50 to 200 µM, cell proliferation rates were measured to be 80.5-44.4%, and 73.4-14.4%, respectively, compared to untreated cells. We also found that treatment for 48 h with 200 µM DHA resulted in 10.8- and 3.6-fold increase in p53 protein level and caspase-3 activation followed by 4.7-and 1.6-fold decrease in survivin mRNA and protein levels, respectively, compared to untreated cells. Treatment of cells with different concentrations of DHA dramatically increased the p53/survivin and caspase-3/survivin ratios by 2.8- to 16.9-fold and 3.3 to 5.6-fold increases, respectively, compared to untreated cells. A decrease in the number of cells ranging from 16% to 70% and an increase in the number of apoptotic cells ranging from 9.3% to 93% was also observed with increasing DHA concentrations. In conclusion, p53 and survivin may provide promising targets of DHA in ALL cells and this compound with high proapoptotic capacity represents the possibility of its therapeutic application for ALL treatment.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Fish Oils / Docosahexaenoic Acids / Tumor Suppressor Protein p53 / Inhibitor of Apoptosis Proteins / Precursor Cell Lymphoblastic Leukemia-Lymphoma Type of study: Risk_factors_studies Limits: Humans Language: En Journal: Nutr Cancer Year: 2017 Type: Article Affiliation country: Iran

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Fish Oils / Docosahexaenoic Acids / Tumor Suppressor Protein p53 / Inhibitor of Apoptosis Proteins / Precursor Cell Lymphoblastic Leukemia-Lymphoma Type of study: Risk_factors_studies Limits: Humans Language: En Journal: Nutr Cancer Year: 2017 Type: Article Affiliation country: Iran