Your browser doesn't support javascript.
loading
FAK tyrosine phosphorylation is regulated by AMPK and controls metabolism in human skeletal muscle.
Lassiter, David G; Nylén, Carolina; Sjögren, Rasmus J O; Chibalin, Alexander V; Wallberg-Henriksson, Harriet; Näslund, Erik; Krook, Anna; Zierath, Juleen R.
Affiliation
  • Lassiter DG; Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4a, IV, SE-171 65, Stockholm, Sweden.
  • Nylén C; Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4a, IV, SE-171 65, Stockholm, Sweden.
  • Sjögren RJO; Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4a, IV, SE-171 65, Stockholm, Sweden.
  • Chibalin AV; Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4a, IV, SE-171 65, Stockholm, Sweden.
  • Wallberg-Henriksson H; Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.
  • Näslund E; Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden.
  • Krook A; Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.
  • Zierath JR; Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4a, IV, SE-171 65, Stockholm, Sweden. Juleen.Zierath@ki.se.
Diabetologia ; 61(2): 424-432, 2018 02.
Article in En | MEDLINE | ID: mdl-29022062
AIMS/HYPOTHESIS: Insulin-mediated signals and AMP-activated protein kinase (AMPK)-mediated signals are activated in response to physiological conditions that represent energy abundance and shortage, respectively. Focal adhesion kinase (FAK) is implicated in insulin signalling and cancer progression in various non-muscle cell types and plays a regulatory role during skeletal muscle differentiation. The role of FAK in skeletal muscle in relation to insulin stimulation or AMPK activation is unknown. We examined the effects of insulin or AMPK activation on FAK phosphorylation in human skeletal muscle and the direct role of FAK on glucose and lipid metabolism. We hypothesised that insulin treatment and AMPK activation would have opposing effects on FAK phosphorylation and that gene silencing of FAK would alter metabolism. METHODS: Human muscle was treated with insulin or the AMPK-activating compound 5-aminoimadazole-4-carboxamide ribonucleotide (AICAR) to determine FAK phosphorylation and glucose transport. Primary human skeletal muscle cells were used to study the effects of insulin or AICAR treatment on FAK signalling during serum starvation, as well as to determine the metabolic consequences of silencing the FAK gene, PTK2. RESULTS: AMPK activation reduced tyrosine phosphorylation of FAK in skeletal muscle. AICAR reduced p-FAKY397 in isolated human skeletal muscle and cultured myotubes. Insulin stimulation did not alter FAK phosphorylation. Serum starvation increased AMPK activation, as demonstrated by increased p-ACCS222, concomitant with reduced p-FAKY397. FAK signalling was reduced owing to serum starvation and AICAR treatment as demonstrated by reduced p-paxillinY118. Silencing PTK2 in primary human skeletal muscle cells increased palmitate oxidation and reduced glycogen synthesis. CONCLUSIONS/INTERPRETATION: AMPK regulates FAK signalling in skeletal muscle. Moreover, siRNA-mediated FAK knockdown enhances lipid oxidation while impairing glycogen synthesis in skeletal muscle. Further exploration of the interaction between AMPK and FAK may lead to novel therapeutic strategies for diabetes and other chronic conditions associated with an altered metabolic homeostasis.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Muscle, Skeletal / Focal Adhesion Protein-Tyrosine Kinases / AMP-Activated Protein Kinases Limits: Female / Humans / Male / Middle aged Language: En Journal: Diabetologia Year: 2018 Type: Article Affiliation country: Sweden

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Muscle, Skeletal / Focal Adhesion Protein-Tyrosine Kinases / AMP-Activated Protein Kinases Limits: Female / Humans / Male / Middle aged Language: En Journal: Diabetologia Year: 2018 Type: Article Affiliation country: Sweden