Your browser doesn't support javascript.
loading
USP7-TRIM27 axis negatively modulates antiviral type I IFN signaling.
Cai, Juan; Chen, Hong-Yan; Peng, Shu-Jie; Meng, Jun-Ling; Wang, Yan; Zhou, Yu; Qian, Xiao-Ping; Sun, Xiu-Yuan; Pang, Xue-Wen; Zhang, Yu; Zhang, Jun.
Affiliation
  • Cai J; Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China.
  • Chen HY; Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China.
  • Peng SJ; Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China.
  • Meng JL; Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China.
  • Wang Y; Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China.
  • Zhou Y; Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China.
  • Qian XP; Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China.
  • Sun XY; Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China.
  • Pang XW; Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China.
  • Zhang Y; Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China.
  • Zhang J; Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China.
FASEB J ; 32(10): 5238-5249, 2018 10.
Article in En | MEDLINE | ID: mdl-29688809
ABSTRACT
Ubiquitination and deubiquitination are important post-translational regulatory mechanisms responsible for fine tuning the antiviral signaling. In this study, we identified a deubiquitinase, the ubiquitin-specific peptidase 7/herpes virus associated ubiquitin-specific protease (USP7/HAUSP) as an important negative modulator of virus-induced signaling. Overexpression of USP7 suppressed Sendai virus and polyinosinic-polycytidylic acid and poly(deoxyadenylic-deoxythymidylic)-induced ISRE and IFN-ß activation, and enhanced virus replication. Knockdown or knockout of endogenous USP7 expression had the opposite effect. Coimmunoprecipitation assays showed that USP7 physically interacted with tripartite motif (TRIM)27. This interaction was enhanced after SeV infection. In addition, TNF receptor-associated factor family member-associated NF-kappa-B-binding kinase (TBK)-1 was pulled down in the TRIM27-USP7 complex. Overexpression of USP7 promoted the ubiquitination and degradation of TBK1 through promoting the stability of TRIM27. Knockout of endogenous USP7 led to enhanced TRIM27 degradation and reduced TBK1 ubiquitination and degradation, resulting in enhanced type I IFN signaling. Our findings suggest that USP7 acts as a negative regulator in antiviral signaling by stabilizing TRIM27 and promoting the degradation of TBK1.-Cai, J., Chen, H.-Y., Peng, S.-J., Meng, J.-L., Wang, Y., Zhou, Y., Qian, X.-P., Sun, X.-Y., Pang, X.-W., Zhang, Y., Zhang, J. USP7-TRIM27 axis negatively modulates antiviral type I IFN signaling.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Respirovirus Infections / Nuclear Proteins / Signal Transduction / Interferon Type I / Sendai virus / DNA-Binding Proteins / Ubiquitin-Specific Peptidase 7 Type of study: Prognostic_studies Limits: Humans Language: En Journal: FASEB J Journal subject: BIOLOGIA / FISIOLOGIA Year: 2018 Type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Respirovirus Infections / Nuclear Proteins / Signal Transduction / Interferon Type I / Sendai virus / DNA-Binding Proteins / Ubiquitin-Specific Peptidase 7 Type of study: Prognostic_studies Limits: Humans Language: En Journal: FASEB J Journal subject: BIOLOGIA / FISIOLOGIA Year: 2018 Type: Article Affiliation country: China