Proteome profiling of exosomes derived from plasma of heifers with divergent genetic merit for fertility.
J Dairy Sci
; 101(7): 6462-6473, 2018 Jul.
Article
in En
| MEDLINE
| ID: mdl-29705424
The current study evaluated exosomes isolated from plasma of heifers bred to have high or low fertility through developing extreme diversity in fertility breeding values, however, key animal traits (e.g., body weight, milk production, and percentage of North American genetics) remained similar between the 2 groups. The exosomes were isolated by a combined ultracentrifugation and size exclusion chromatography approach and characterized by their size distribution (nanoparticle tracking analysis), morphology (transmission electron microscopy), and presence of exosomal markers (immunoblotting). In addition, a targeted mass spectrometry approach was used to confirm the presence of 2 exosomal markers, tumor susceptibility gene 101 and flotillin 1. The number of exosomes from plasma of high fertility heifers was greater compared with low fertility heifers. Interestingly, the exosomal proteomic profile, evaluated using mass spectrometry, identified 89 and 116 proteins in the high and low fertility heifers respectively, of which 4 and 31 were unique, respectively. These include proteins associated with specific biological processes and molecular functions of fertility. Most notably, the tetratricopeptide repeat protein 41-related, glycodelin, and kelch-like protein 8 were identified in plasma exosomes unique to the low fertility heifers. These proteins are suggested to play a role in reproduction; however, the role of these proteins in dairy cow reproduction remains to be elucidated. Their identification underscores the potential for proteins within exosomes to provide information on the fertility status and physiological condition of the cow. This may potentially lead to the development of prognostic tools and interventions to improving dairy cow fertility.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Cattle
/
Proteomics
/
Fertility
Limits:
Animals
Language:
En
Journal:
J Dairy Sci
Year:
2018
Type:
Article
Affiliation country:
Australia