Your browser doesn't support javascript.
loading
Carotid Taenia solium Oncosphere Infection: A Novel Porcine Neurocysticercosis Model.
Alroy, Karen A; Arroyo, Gianfranco; Gilman, Robert H; Gonzales-Gustavson, Eloy; Gallegos, Linda; Gavidia, Cesar M; Verastegui, Manuela; Rodriguez, Silvia; Lopez, Teresa; Gomez-Puerta, Luis A; Alroy, Joseph; Garcia, Hector H; Gonzalez, Armando E.
Affiliation
  • Alroy KA; Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland.
  • Arroyo G; School of Public Health and Management, Universidad Peruana Cayetano Heredia, Lima, Peru.
  • Gilman RH; Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland.
  • Gonzales-Gustavson E; School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru.
  • Gallegos L; School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru.
  • Gavidia CM; School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru.
  • Verastegui M; Departments of Pathology, Universidad Peruana Cayetano Heredia, Lima, Peru.
  • Rodriguez S; Microbiology of the School of Science, Universidad Peruana Cayetano Heredia, Lima, Peru.
  • Lopez T; School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru.
  • Gomez-Puerta LA; School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru.
  • Alroy J; School of Medicine, Tufts University, Boston, Massachusetts.
  • Garcia HH; Microbiology of the School of Science, Universidad Peruana Cayetano Heredia, Lima, Peru.
  • Gonzalez AE; Microbiology of the School of Science, Universidad Peruana Cayetano Heredia, Lima, Peru.
Am J Trop Med Hyg ; 99(2): 380-387, 2018 08.
Article in En | MEDLINE | ID: mdl-29893202
Neurocysticercosis (NCC), the infection of the human central nervous system (CNS) with larval cysts of Taenia solium causes widespread neurological morbidity. Animal models are crucial for studying the pathophysiology and treatment of NCC. Some drawbacks of current NCC models include differences in the pathogenesis of the model and wild-type parasite, low rates of infection efficiency and lack of reproducibility. We describe a novel porcine model that recreates infection in the CNS with high efficiency. Activated oncospheres, either in a high (45,000-50,000) or low (10,000) dose were inoculated in the common carotid artery of 12 pigs by ultrasound-guided catheterization. Following oncosphere injection, either a high (30 mL) or low (1-3 mL) volume of saline flush was also administered. Cyst burden in the CNS was evaluated independently according to oncosphere dose and flush volume. Neurocysticercosis was achieved in 8/12 (66.7%) pigs. Cyst burden in the CNS of pigs was higher in the high versus the low oncosphere dose category (median: 4.5; interquartile ranges [IQR]: 1-8 and median: 1; IQR: 0-4, respectively) and in the high versus the low flush volume category (median 5.5; IQR: 1-8 and median: 1; IQR: 0-2, respectively), although not statistically different. All cysts in the CNS were viable, whereas both viable and degenerated cysts were found in the musculature. Carotid injection of activated oncospheres in pigs is effective in reproducing NCC. Oncosphere entry into the CNS by way of vasculature mimics wild-type infection, and provides a useful alternative for future investigations on the pathogenesis and antiparasitic treatment of NCC.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Swine / Neurocysticercosis / Disease Models, Animal Type of study: Prognostic_studies Limits: Animals Language: En Journal: Am J Trop Med Hyg Year: 2018 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Swine / Neurocysticercosis / Disease Models, Animal Type of study: Prognostic_studies Limits: Animals Language: En Journal: Am J Trop Med Hyg Year: 2018 Type: Article