Integration of elicited expert information via a power prior in Bayesian variable selection: Application to colon cancer data.
Stat Methods Med Res
; 29(2): 541-567, 2020 02.
Article
in En
| MEDLINE
| ID: mdl-30963815
BACKGROUND: Building tools to support personalized medicine needs to model medical decision-making. For this purpose, both expert and real world data provide a rich source of information. Currently, machine learning techniques are developing to select relevant variables for decision-making. Rather than using data-driven analysis alone, eliciting prior information from physicians related to their medical decision-making processes can be useful in variable selection. Our framework is electronic health records data on repeated dose adjustment of Irinotecan for the treatment of metastatic colorectal cancer. We propose a method that incorporates elicited expert weights associated with variables involved in dose reduction decisions into the Stochastic Search Variable Selection (SSVS), a Bayesian variable selection method, by using a power prior. METHODS: Clinician experts were first asked to provide numerical clinical relevance weights to express their beliefs about the importance of each variable in their medical decision making. Then, we modeled the link between repeated dose reduction, patient characteristics, and toxicities by assuming a logistic mixed-effects model. Simulated data were generated based on the elicited weights and combined with the observed dose reduction data via a power prior. We compared the Bayesian power prior-based SSVS performance to the usual SSVS in our case study, including a sensitivity analysis using the power prior parameter. RESULTS: The selected variables differ when using only expert knowledge, only the usual SSVS, or combining both. Our method enables one to select rare variables that may be missed using only the observed data and to discard variables that appear to be relevant based on the data but not relevant from the expert perspective. CONCLUSION: We introduce an innovative Bayesian variable selection method that adaptively combines elicited expert information and real world data. The method selects a set of variables relevant to model medical decision process.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Colonic Neoplasms
/
Expert Testimony
Type of study:
Prognostic_studies
/
Risk_factors_studies
Limits:
Aged
/
Aged80
/
Female
/
Humans
/
Male
Language:
En
Journal:
Stat Methods Med Res
Year:
2020
Type:
Article
Affiliation country:
France