Your browser doesn't support javascript.
loading
A Suite of Therapeutically-Inspired Nucleic Acid Logic Systems for Conditional Generation of Single-Stranded and Double-Stranded Oligonucleotides.
Zakrevsky, Paul; Bindewald, Eckart; Humbertson, Hadley; Viard, Mathias; Dorjsuren, Nomongo; Shapiro, Bruce A.
Affiliation
  • Zakrevsky P; RNA Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA. paul.zakrevsky@nih.gov.
  • Bindewald E; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA. eckart@mail.nih.gov.
  • Humbertson H; RNA Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA. hadley.humbertson@nih.gov.
  • Viard M; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA. mathias.viard@nih.gov.
  • Dorjsuren N; RNA Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA. nomiko.d@gmail.com.
  • Shapiro BA; RNA Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA. shapirbr@mail.nih.gov.
Nanomaterials (Basel) ; 9(4)2019 Apr 15.
Article in En | MEDLINE | ID: mdl-30991728
ABSTRACT
Several varieties of small nucleic acid constructs are able to modulate gene expression via one of a number of different pathways and mechanisms. These constructs can be synthesized, assembled and delivered to cells where they are able to impart regulatory functions, presenting a potential avenue for the development of nucleic acid-based therapeutics. However, distinguishing aberrant cells in need of therapeutic treatment and limiting the activity of deliverable nucleic acid constructs to these specific cells remains a challenge. Here, we designed and characterized a collection of nucleic acids systems able to generate and/or release sequence-specific oligonucleotide constructs in a conditional manner based on the presence or absence of specific RNA trigger molecules. The conditional function of these systems utilizes the implementation of AND and NOT Boolean logic elements, which could ultimately be used to restrict the release of functionally relevant nucleic acid constructs to specific cellular environments defined by the high or low expression of particular RNA biomarkers. Each system is generalizable and designed with future therapeutic development in mind. Every construct assembles through nuclease-resistant RNA/DNA hybrid duplex formation, removing the need for additional 2'-modifications, while none contain any sequence restrictions on what can define the diagnostic trigger sequence or the functional oligonucleotide output.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nanomaterials (Basel) Year: 2019 Type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nanomaterials (Basel) Year: 2019 Type: Article Affiliation country: United States