Your browser doesn't support javascript.
loading
Spinal IL-33/ST2 signaling mediates chronic itch in mice through the astrocytic JAK2-STAT3 cascade.
Du, Lixia; Hu, Xueming; Yang, Wei; Yasheng, Hanikezi; Liu, Shenbin; Zhang, Wenwen; Zhou, Yang; Cui, Wenqiang; Zhu, Jianyu; Qiao, Zheng; Maoying, Qiliang; Chu, Yuxia; Zhou, Hong; Wang, Yanqing; Mi, Wenli.
Affiliation
  • Du L; Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.
  • Hu X; Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.
  • Yang W; Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.
  • Yasheng H; Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.
  • Liu S; Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.
  • Zhang W; Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.
  • Zhou Y; Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.
  • Cui W; Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.
  • Zhu J; Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.
  • Qiao Z; Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.
  • Maoying Q; Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.
  • Chu Y; Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.
  • Zhou H; Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China.
  • Wang Y; Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.
  • Mi W; Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.
Glia ; 67(9): 1680-1693, 2019 09.
Article in En | MEDLINE | ID: mdl-31087583
ABSTRACT
Interleukin-33 (IL-33) and its receptor ST2 contribute to spinal glial activation and chronic pain. A recent study showed that peripheral IL-33 plays a pivotal role in the pathogenesis of chronic itch induced by poison ivy. However, how IL-33/ST2 signaling in the spinal cord potentially mediates chronic itch remains elusive. Here, we determined that St2-/- substantially reduced scratching behaviors in 2,4-dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis (ACD) as well as acetone and diethylether followed by water-induced dry skin in mice. Intrathecal administration of the neutralizing anti-ST2 or anti-IL-33 antibody remarkably decreased the scratching response in DNFB-induced ACD mice. Expression of spinal IL-33 and ST2 significantly increased in ACD mice, as evidenced by increased mRNA and protein levels. Immunofluorescence and in situ hybridization demonstrated that increased expression of spinal IL-33 was predominant in oligodendrocytes and astrocytes, whereas ST2 was mainly expressed in astrocytes. Further studies showed that in ACD mice, the activation of astrocytes and increased phosphorylation of signal transducer and activator of transcription 3 (STAT3) were markedly attenuated by St2-/- . Intrathecal injection of Janus Kinase 2 Inhibitor AG490 significantly alleviated scratching behaviors in ACD mice. rIL-33 pretreatment exacerbated gastrin-releasing peptide (GRP)-evoked scratching behaviors. This increased gastrin-releasing peptide receptor (GRPR) expression was abolished by St2-/- . Tnf-α upregulation was suppressed by St2-/- . Our results indicate that the spinal IL-33/ST2 signaling pathway contributes to chronic itch via astrocytic JAK2-STAT3 cascade activation, promoting TNF-α release to regulate the GRP/GRPR signaling-related itch response. Thus, these findings provide a potential therapeutic option for treating chronic pruritus.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Pruritus / Spinal Cord / Astrocytes / Dermatitis, Allergic Contact / Interleukin-33 / Interleukin-1 Receptor-Like 1 Protein Type of study: Prognostic_studies Limits: Animals Language: En Journal: Glia Journal subject: NEUROLOGIA Year: 2019 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Pruritus / Spinal Cord / Astrocytes / Dermatitis, Allergic Contact / Interleukin-33 / Interleukin-1 Receptor-Like 1 Protein Type of study: Prognostic_studies Limits: Animals Language: En Journal: Glia Journal subject: NEUROLOGIA Year: 2019 Type: Article