Highly efficient editing of the ß-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease.
Nucleic Acids Res
; 47(15): 7955-7972, 2019 09 05.
Article
in En
| MEDLINE
| ID: mdl-31147717
Sickle cell disease (SCD) is a monogenic disorder that affects millions worldwide. Allogeneic hematopoietic stem cell transplantation is the only available cure. Here, we demonstrate the use of CRISPR/Cas9 and a short single-stranded oligonucleotide template to correct the sickle mutation in the ß-globin gene in hematopoietic stem and progenitor cells (HSPCs) from peripheral blood or bone marrow of patients with SCD, with 24.5 ± 7.6% efficiency without selection. Erythrocytes derived from gene-edited cells showed a marked reduction of sickle cells, with the level of normal hemoglobin (HbA) increased to 25.3 ± 13.9%. Gene-corrected SCD HSPCs retained the ability to engraft when transplanted into non-obese diabetic (NOD)-SCID-gamma (NSG) mice with detectable levels of gene correction 16-19 weeks post-transplantation. We show that, by using a high-fidelity SpyCas9 that maintained the same level of on-target gene modification, the off-target effects including chromosomal rearrangements were significantly reduced. Taken together, our results demonstrate efficient gene correction of the sickle mutation in both peripheral blood and bone marrow-derived SCD HSPCs, a significant reduction in sickling of red blood cells, engraftment of gene-edited SCD HSPCs in vivo and the importance of reducing off-target effects; all are essential for moving genome editing based SCD treatment into clinical practice.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Hematopoietic Stem Cells
/
Hematopoietic Stem Cell Transplantation
/
Beta-Globins
/
Gene Editing
/
Anemia, Sickle Cell
Limits:
Animals
/
Humans
Language:
En
Journal:
Nucleic Acids Res
Year:
2019
Type:
Article
Affiliation country:
United States