Your browser doesn't support javascript.
loading
Characterisation of clinical and immune reactivity to barley and rye ingestion in children with coeliac disease.
Hardy, Melinda Y; Russell, Amy K; Pizzey, Catherine; Jones, Claerwen M; Watson, Katherine A; La Gruta, Nicole L; Cameron, Donald J; Tye-Din, Jason A.
Affiliation
  • Hardy MY; Immunology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
  • Russell AK; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
  • Pizzey C; Immunology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
  • Jones CM; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
  • Watson KA; Department of Gastroenterology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.
  • La Gruta NL; Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.
  • Cameron DJ; Immunology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
  • Tye-Din JA; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
Gut ; 69(5): 830-840, 2020 05.
Article in En | MEDLINE | ID: mdl-31462555
ABSTRACT

OBJECTIVE:

Barley and rye are major components of the Western diet, and historic feeding studies indicate that they cause clinical effects in patients with coeliac disease (CD). This toxicity has been attributed to sequence homology with immunogenic wheat sequences, but in adults with CD, these cereals stimulate unique T cells, indicating a critical contribution to gluten immunity independent of wheat. Clinical and immune feeding studies with these grains in children with CD are sparse. We undertook a barley and rye feeding study to characterise the clinical and T-cell responses in children with CD.

DESIGN:

42 children with human leucocyte antigen (HLA)-DQ2.5+ (aged 3-17 years) consumed barley or rye for 3 days. Blood-derived gluten-specific T cells were tested for reactivity against a panel of barley (hordein) and rye (secalin) peptides. Hordein and secalin-specific T-cell clones were generated and tested for grain cross-reactivity. T-cell receptor sequencing was performed on sorted single cells. T-cell responses were compared with those observed in adults with CD.

RESULTS:

90% of the children experienced adverse symptoms, mostly GI, and 61% had detectable gluten-specific T-cell responses targeting peptides homologous to those immunogenic in adults. Deamidation was important for peptide reactivity. Homozygosity for HLA-DQ2.5 predicted a stronger T-cell response. Gluten-specific T cells showed striking similarities in their cross-reactivity between children and adults.

CONCLUSIONS:

Barley and rye induce a consistent range of clinical and T-cell responses in children with CD. The findings highlight the importance of a series of dominant hordein and secalin peptides pathogenic in children with CD, some independent of wheat, which closely correspond to those seen in adults.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Secale / Hordeum / HLA-DQ Antigens / Celiac Disease / Cross Reactions Type of study: Diagnostic_studies / Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limits: Adolescent / Child / Child, preschool / Female / Humans / Male Language: En Journal: Gut Year: 2020 Type: Article Affiliation country: Australia

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Secale / Hordeum / HLA-DQ Antigens / Celiac Disease / Cross Reactions Type of study: Diagnostic_studies / Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limits: Adolescent / Child / Child, preschool / Female / Humans / Male Language: En Journal: Gut Year: 2020 Type: Article Affiliation country: Australia