Your browser doesn't support javascript.
loading
The Control Centers of Biomolecular Phase Separation: How Membrane Surfaces, PTMs, and Active Processes Regulate Condensation.
Snead, Wilton T; Gladfelter, Amy S.
Affiliation
  • Snead WT; Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  • Gladfelter AS; Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA. Electronic address: amyglad@unc.edu.
Mol Cell ; 76(2): 295-305, 2019 10 17.
Article in En | MEDLINE | ID: mdl-31604601
ABSTRACT
Biomolecular condensation is emerging as an essential process for cellular compartmentalization. The formation of biomolecular condensates can be driven by liquid-liquid phase separation, which arises from weak, multivalent interactions among proteins and nucleic acids. A substantial body of recent work has revealed that diverse cellular processes rely on biomolecular condensation and that aberrant phase separation may cause disease. Many proteins display an intrinsic propensity to undergo phase separation. However, the mechanisms by which cells regulate phase separation to build functional condensates at the appropriate time and location are only beginning to be understood. Here, we review three key cellular mechanisms that enable the control of biomolecular phase separation membrane surfaces, post-translational modifications, and active processes. We discuss how these mechanisms may function in concert to provide robust control over biomolecular condensates and suggest new research avenues that will elucidate how cells build and maintain these key centers of cellular compartmentalization.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Nucleic Acids / Proteins / Cell Compartmentation / Cell Membrane / Protein Processing, Post-Translational / Protein Transport Limits: Animals / Humans Language: En Journal: Mol Cell Journal subject: BIOLOGIA MOLECULAR Year: 2019 Type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Nucleic Acids / Proteins / Cell Compartmentation / Cell Membrane / Protein Processing, Post-Translational / Protein Transport Limits: Animals / Humans Language: En Journal: Mol Cell Journal subject: BIOLOGIA MOLECULAR Year: 2019 Type: Article Affiliation country: United States