Your browser doesn't support javascript.
loading
Prediction and observation of an antiferromagnetic topological insulator.
Otrokov, M M; Klimovskikh, I I; Bentmann, H; Estyunin, D; Zeugner, A; Aliev, Z S; Gaß, S; Wolter, A U B; Koroleva, A V; Shikin, A M; Blanco-Rey, M; Hoffmann, M; Rusinov, I P; Vyazovskaya, A Yu; Eremeev, S V; Koroteev, Yu M; Kuznetsov, V M; Freyse, F; Sánchez-Barriga, J; Amiraslanov, I R; Babanly, M B; Mamedov, N T; Abdullayev, N A; Zverev, V N; Alfonsov, A; Kataev, V; Büchner, B; Schwier, E F; Kumar, S; Kimura, A; Petaccia, L; Di Santo, G; Vidal, R C; Schatz, S; Kißner, K; Ünzelmann, M; Min, C H; Moser, Simon; Peixoto, T R F; Reinert, F; Ernst, A; Echenique, P M; Isaeva, A; Chulkov, E V.
Affiliation
  • Otrokov MM; Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, San Sebastián, Spain. mikhail.otrokov@gmail.com.
  • Klimovskikh II; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain. mikhail.otrokov@gmail.com.
  • Bentmann H; Donostia International Physics Center (DIPC), San Sebastián, Spain. mikhail.otrokov@gmail.com.
  • Estyunin D; Saint Petersburg State University, Saint Petersburg, Russia. mikhail.otrokov@gmail.com.
  • Zeugner A; Saint Petersburg State University, Saint Petersburg, Russia.
  • Aliev ZS; Experimentelle Physik VII, Universität Würzburg, Würzburg, Germany.
  • Gaß S; Saint Petersburg State University, Saint Petersburg, Russia.
  • Wolter AUB; Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.
  • Koroleva AV; Institute of Physics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan.
  • Shikin AM; Azerbaijan State Oil and Industry University, Baku, Azerbaijan.
  • Blanco-Rey M; Institute for Solid State Research, Leibniz IFW Dresden, Dresden, Germany.
  • Hoffmann M; Institute for Solid State Research, Leibniz IFW Dresden, Dresden, Germany.
  • Rusinov IP; Saint Petersburg State University, Saint Petersburg, Russia.
  • Vyazovskaya AY; Saint Petersburg State University, Saint Petersburg, Russia.
  • Eremeev SV; Donostia International Physics Center (DIPC), San Sebastián, Spain.
  • Koroteev YM; Departamento de Física de Materiales UPV/EHU, San Sebastián, Spain.
  • Kuznetsov VM; Institut für Theoretische Physik, Johannes Kepler Universität, Linz, Austria.
  • Freyse F; Saint Petersburg State University, Saint Petersburg, Russia.
  • Sánchez-Barriga J; Tomsk State University, Tomsk, Russia.
  • Amiraslanov IR; Saint Petersburg State University, Saint Petersburg, Russia.
  • Babanly MB; Tomsk State University, Tomsk, Russia.
  • Mamedov NT; Saint Petersburg State University, Saint Petersburg, Russia.
  • Abdullayev NA; Tomsk State University, Tomsk, Russia.
  • Zverev VN; Institute of Strength Physics and Materials Science, Russian Academy of Sciences, Tomsk, Russia.
  • Alfonsov A; Tomsk State University, Tomsk, Russia.
  • Kataev V; Institute of Strength Physics and Materials Science, Russian Academy of Sciences, Tomsk, Russia.
  • Büchner B; Tomsk State University, Tomsk, Russia.
  • Schwier EF; Elektronenspeicherring BESSY II, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany.
  • Kumar S; Elektronenspeicherring BESSY II, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany.
  • Kimura A; Institute of Physics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan.
  • Petaccia L; Institute of Catalysis and Inorganic Chemistry, Azerbaijan National Academy of Science, Baku, Azerbaijan.
  • Di Santo G; Institute of Physics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan.
  • Vidal RC; Institute of Physics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan.
  • Schatz S; Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Russia.
  • Kißner K; Institute for Solid State Research, Leibniz IFW Dresden, Dresden, Germany.
  • Ünzelmann M; Institute for Solid State Research, Leibniz IFW Dresden, Dresden, Germany.
  • Min CH; Institute for Solid State Research, Leibniz IFW Dresden, Dresden, Germany.
  • Moser S; Faculty of Physics, Technische Universität Dresden, Dresden, Germany.
  • Peixoto TRF; Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, Japan.
  • Reinert F; Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, Japan.
  • Ernst A; Department of Physical Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan.
  • Echenique PM; Elettra Sincrotrone Trieste, Trieste, Italy.
  • Isaeva A; Elettra Sincrotrone Trieste, Trieste, Italy.
  • Chulkov EV; Experimentelle Physik VII, Universität Würzburg, Würzburg, Germany.
Nature ; 576(7787): 416-422, 2019 12.
Article in En | MEDLINE | ID: mdl-31853084
ABSTRACT
Magnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order1. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics1, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however, such an approach leads to strongly inhomogeneous magnetic4 and electronic5 properties of these materials, restricting the observation of important effects to very low temperatures2,3. An intrinsic magnetic topological insulator-a stoichiometric well ordered magnetic compound-could be an ideal solution to these problems, but no such material has been observed so far. Here we predict by ab initio calculations and further confirm using various experimental techniques the realization of an antiferromagnetic topological insulator in the layered van der Waals compound MnBi2Te4. The antiferromagnetic ordering  that MnBi2Te4  shows makes it invariant with respect to the combination of the time-reversal and primitive-lattice translation symmetries, giving rise to a ℤ2 topological classification; ℤ2 = 1 for MnBi2Te4, confirming its topologically nontrivial nature. Our experiments indicate that the symmetry-breaking (0001) surface of MnBi2Te4 exhibits a large bandgap in the topological surface state. We expect this property to eventually enable the observation of a number of fundamental phenomena, among them quantized magnetoelectric coupling6-8 and axion electrodynamics9,10. Other exotic phenomena could become accessible at much higher temperatures than those reached so far, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3.

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies / Risk_factors_studies Language: En Journal: Nature Year: 2019 Type: Article Affiliation country: Spain

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies / Risk_factors_studies Language: En Journal: Nature Year: 2019 Type: Article Affiliation country: Spain