Your browser doesn't support javascript.
loading
Developing a time-domain method for simulating statistical behavior of many-emitter systems in the presence of electromagnetic field.
Hashemi, A R; Hosseini-Farzad, M.
Affiliation
  • Hashemi AR; Department of Physics, College of Sciences, Shiraz University, Shiraz 71946-84795, Iran.
  • Hosseini-Farzad M; Department of Physics, College of Sciences, Shiraz University, Shiraz 71946-84795, Iran.
Phys Rev E ; 101(1-1): 013308, 2020 Jan.
Article in En | MEDLINE | ID: mdl-32069630
ABSTRACT
In this paper, one of the major shortcomings of the conventional numerical approaches is alleviated by introducing the probabilistic nature of molecular transitions into the framework of classical computational electrodynamics. The main aim is to develop a numerical method which is capable of capturing the statistical attributes caused by the interactions between a group of spontaneous as well as stimulated emitters and the surrounding electromagnetic field. The electromagnetic field is governed by classical Maxwell's equations, while energy is absorbed from and emitted to the (surrounding) field according to the transitions occurring for the emitters, which are governed by time-dependent probability functions. These probabilities are principally consistent with quantum mechanics. In order to validate the proposed method, it is applied to three different test cases directionality of fluorescent emission in a corrugated single-hole gold nanodisk, spatial and temporal coherence of fluorescent emission in a hybrid photonic-plasmonic crystal, and stimulated emission of a core-shell SPASER (surface plasmon amplification by stimulated emission of radiation). The results are shown to be closely comparable to the experimental results reported in the literature.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Phys Rev E Year: 2020 Type: Article Affiliation country: Iran

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Phys Rev E Year: 2020 Type: Article Affiliation country: Iran