Your browser doesn't support javascript.
loading
Elucidating the influence of linker histone variants on chromatosome dynamics and energetics.
Woods, Dustin C; Wereszczynski, Jeff.
Affiliation
  • Woods DC; Department of Chemistry and the Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL 60616, USA.
  • Wereszczynski J; Department of Physics and the Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL 60616, USA.
Nucleic Acids Res ; 48(7): 3591-3604, 2020 04 17.
Article in En | MEDLINE | ID: mdl-32128577
Linker histones are epigenetic regulators that bind to nucleosomes and alter chromatin structures and dynamics. Biophysical studies have revealed two binding modes in the linker histone/nucleosome complex, the chromatosome, where the linker histone is either centered on or askew from the dyad axis. Each has been posited to have distinct effects on chromatin, however the molecular and thermodynamic mechanisms that drive them and their dependence on linker histone compositions remain poorly understood. We present molecular dynamics simulations of chromatosomes with the globular domain of two linker histone variants, generic H1 (genGH1) and H1.0 (GH1.0), to determine how their differences influence chromatosome structures, energetics and dynamics. Results show that both unbound linker histones adopt a single compact conformation. Upon binding, DNA flexibility is reduced, resulting in increased chromatosome compaction. While both variants enthalpically favor on-dyad binding, energetic benefits are significantly higher for GH1.0, suggesting that GH1.0 is more capable than genGH1 of overcoming the large entropic reduction required for on-dyad binding which helps rationalize experiments that have consistently demonstrated GH1.0 in on-dyad states but that show genGH1 in both locations. These simulations highlight the thermodynamic basis for different linker histone binding motifs, and details their physical and chemical effects on chromatosomes.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Histones / Nucleosomes Language: En Journal: Nucleic Acids Res Year: 2020 Type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Histones / Nucleosomes Language: En Journal: Nucleic Acids Res Year: 2020 Type: Article Affiliation country: United States