Your browser doesn't support javascript.
loading
Comprehensive Isotopic Targeted Mass Spectrometry: Reliable Metabolic Flux Analysis with Broad Coverage.
Shi, Xiaojian; Xi, Bowei; Jasbi, Paniz; Turner, Cassidy; Jin, Yan; Gu, Haiwei.
Affiliation
  • Shi X; Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, 13208 East Shea Boulevard, Scottsdale, Arizona 85259, United States.
  • Xi B; Department of Statistics, Purdue University, West Lafayette, Indiana 47907, United States.
  • Jasbi P; Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, 13208 East Shea Boulevard, Scottsdale, Arizona 85259, United States.
  • Turner C; Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, 13208 East Shea Boulevard, Scottsdale, Arizona 85259, United States.
  • Jin Y; Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, 13208 East Shea Boulevard, Scottsdale, Arizona 85259, United States.
  • Gu H; Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, 13208 East Shea Boulevard, Scottsdale, Arizona 85259, United States.
Anal Chem ; 92(17): 11728-11738, 2020 09 01.
Article in En | MEDLINE | ID: mdl-32697570
ABSTRACT
Metabolic flux analysis (MFA) is highly relevant to understanding metabolic mechanisms of various biological processes. While the pace of methodology development in MFA has been rapid, a major challenge the field continues to witness is limited metabolite coverage, often restricted to a small to moderate number of well-known compounds. In addition, isotopic peaks from an enriched metabolite tend to have low abundances, which makes liquid chromatography tandem mass spectrometry (LC-MS/MS) highly useful in MFA due to its high sensitivity and specificity. Previously we have built large-scale LC-MS/MS approaches that can be routinely used for measurement of up to ∼1,900 metabolite/feature levels [Gu et al. Anal. Chem. 2015, 87, 12355-12362. Shi et al. Anal. Chem. 2019, 91, 13737-13745.]. In this study, we aim to expand our previous studies focused on metabolite level measurements to flux analysis and establish a novel comprehensive isotopic targeted mass spectrometry (CIT-MS) method for reliable MFA analysis with broad coverage. As a proof-of-principle, we have applied CIT-MS to compare the steady-state enrichment of metabolites between Myc(oncogene)-On and Myc-Off Tet21N human neuroblastoma cells cultured with U-13C6-glucose medium. CIT-MS is operationalized using multiple reaction monitoring (MRM) mode and is able to perform MFA of 310 identified metabolites (142 reliably detected, 46 kinetically profiled) selected from >35 metabolic pathways of strong biological significance. Further, we developed a novel concept of relative flux, which eliminates the requirement of absolute quantitation in traditional MFA and thus enables comparative MFA under the pseudosteady state. As a result, CIT-MS was shown to possess the advantages of broad coverage, easy implementation, fast throughput, and more importantly, high fidelity and accuracy in MFA. In principle, CIT-MS can be easily adapted to track the flux of other labeled tracers (such as 15N-tracers) in any metabolite detectable by LC-MS/MS and in various biological models (such as mice). Therefore, CIT-MS has great potential to bring new insights to both basic and clinical metabolism research.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Mass Spectrometry / Metabolic Flux Analysis / Isotope Labeling Limits: Humans Language: En Journal: Anal Chem Year: 2020 Type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Mass Spectrometry / Metabolic Flux Analysis / Isotope Labeling Limits: Humans Language: En Journal: Anal Chem Year: 2020 Type: Article Affiliation country: United States