Your browser doesn't support javascript.
loading
Excitation of surface plasma waves and fast electron generation in relativistic laser-plasma interaction.
Raynaud, M; Héron, A; Adam, J-C.
Affiliation
  • Raynaud M; Laboratoire des Solides Irradiés, Ecole Polytechnique, Institut Polytechnique de Paris, CNRS, CEA/DRF/IRAMIS, 91128, Palaiseau, France. michele.raynaud-brun@polytechnique.edu.
  • Héron A; Centre de Physique Théorique, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France.
  • Adam JC; Centre de Physique Théorique, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France.
Sci Rep ; 10(1): 13450, 2020 Aug 10.
Article in En | MEDLINE | ID: mdl-32778767
ABSTRACT
The excitation of surface plasma waves (SPW) by an intense short laser pulse is a useful tool to enhance the laser absorption and the electron heating in the target. In this work, the influence of the transverse laser profile and the pulse duration used to excited SPW is investigated from Fluid and 2D Particle-in-Cell simulations. We show the existence of a lobe of surface plasma wave modes. Our results highlight surface plasma waves excitation mechanism and define the laser parameters to optimise the SPW excitation and the kinetic energy of the associated electron trapped in the wave. It opens the door to monitor the spectral mode distribution and temporal shape of the excited surface waves in the high relativistic regime. The most important result of the study is that-at least in 2D-the charge and the energy of the electron bunches depend essentially on the laser energy rather than on temporal or spatial shape of the laser pulse.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Rep Year: 2020 Type: Article Affiliation country: France

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Rep Year: 2020 Type: Article Affiliation country: France