Your browser doesn't support javascript.
loading
Age- and sex-related dietary specialization facilitate seasonal resource partitioning in a migratory shorebird.
Hall, Laurie A; De La Cruz, Susan E W; Woo, Isa; Kuwae, Tomohiro; Takekawa, John Y.
Affiliation
  • Hall LA; San Francisco Bay Estuary Field Station Western Ecological Research Center U.S. Geological Survey Moffett Field CA USA.
  • De La Cruz SEW; San Francisco Bay Estuary Field Station Western Ecological Research Center U.S. Geological Survey Moffett Field CA USA.
  • Woo I; San Francisco Bay Estuary Field Station Western Ecological Research Center U.S. Geological Survey Moffett Field CA USA.
  • Kuwae T; Coastal and Estuarine Environment Research Group Port and Airport Research Institute Yokosuka Japan.
  • Takekawa JY; San Francisco Bay Estuary Field Station Western Ecological Research Center U.S. Geological Survey Moffett Field CA USA.
Ecol Evol ; 11(4): 1866-1876, 2021 Feb.
Article in En | MEDLINE | ID: mdl-33614009
Dietary specialization is common in animals and has important implications for individual fitness, inter- and intraspecific competition, and the adaptive potential of a species. Diet composition can be influenced by age- and sex-related factors including an individual's morphology, social status, and acquired skills; however, specialization may only be necessary when competition is intensified by high population densities or increased energetic demands.To better understand the role of age- and sex-related dietary specialization in facilitating seasonal resource partitioning, we inferred the contribution of biofilm, microphytobenthos, and benthic invertebrates to the diets of western sandpipers (Calidris mauri) from different demographic groups during mid-winter (January/February) and at the onset of the breeding migration (April) using stable isotope mixing models. Western sandpipers are sexually dimorphic with females having significantly greater body mass and bill length than males.Diet composition differed between seasons and among demographic groups. In winter, prey consumption was similar among demographic groups, but, in spring, diet composition differed with bill length and body mass explaining 31% of the total variation in diet composition. Epifaunal invertebrates made up a greater proportion of the diet in males which had lesser mass and shorter bills than females. Consumption of Polychaeta increased with increasing bill length and was greatest in adult females. In contrast, consumption of microphytobenthos, thought to be an important food source for migrating sandpipers, increased with decreasing bill length and was greatest in juvenile males.Our results provide the first evidence that age- and sex-related dietary specialization in western sandpipers facilitate seasonal resource partitioning that could reduce competition during spring at the onset of the breeding migration.Our study underscores the importance of examining resource partitioning throughout the annual cycle to inform fitness and demographic models and facilitate conservation efforts.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Ecol Evol Year: 2021 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Ecol Evol Year: 2021 Type: Article