FASN inhibition as a potential treatment for endocrine-resistant breast cancer.
Breast Cancer Res Treat
; 187(2): 375-386, 2021 Jun.
Article
in En
| MEDLINE
| ID: mdl-33893909
PURPOSE: The majority of breast cancers are estrogen receptor (ERα) positive making endocrine therapy a mainstay for these patients. Unfortunately, resistance to endocrine therapy is a common occurrence. Fatty acid synthase (FASN) is a key enzyme in lipid biosynthesis and its expression is commensurate with tumor grade and resistance to numerous therapies. METHODS: The effect of the FASN inhibitor TVB-3166 on ERα expression and cell growth was characterized in tamoxifen-resistant cell lines, xenografts, and patient explants. Subcellular localization of ERα was assessed using subcellular fractionations. Palmitoylation and ubiquitination of ERα were assessed by immunoprecipitation. ERα and p-eIF2α protein levels were analyzed by Western blotting after treatment with TVB-3166 with or without the addition of palmitate or BAPTA. RESULTS: TVB-3166 treatment leads to a marked inhibition of proliferation in tamoxifen-resistant cells compared to the parental cells. Additionally, TVB-3166 significantly inhibited tamoxifen-resistant breast tumor growth in mice and decreased proliferation of primary tumor explants compared to untreated controls. FASN inhibition significantly reduced ERα levels most prominently in endocrine-resistant cells and altered its subcellular localization. Furthermore, we showed that the reduction of ERα expression upon TVB-3166 treatment is mediated through the induction of endoplasmic reticulum stress. CONCLUSION: Our preclinical data provide evidence that FASN inhibition by TVB-3166 presents a promising therapeutic strategy for the treatment of endocrine-resistant breast cancer. Further clinical development of FASN inhibitors for endocrine-resistant breast cancer should be considered.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Breast Neoplasms
/
Enzyme Inhibitors
/
Fatty Acid Synthase, Type I
Limits:
Animals
/
Female
/
Humans
Language:
En
Journal:
Breast Cancer Res Treat
Year:
2021
Type:
Article
Affiliation country:
United States