Your browser doesn't support javascript.
loading
Cardiac Magnetic Resonance for Early Detection of Radiation Therapy-Induced Cardiotoxicity in a Small Animal Model.
Ibrahim, El-Sayed H; Baruah, Dhiraj; Croisille, Pierre; Stojanovska, Jadranka; Rubenstein, Jason C; Frei, Anne; Schlaak, Rachel A; Lin, Chieh-Yu; Pipke, Jamie L; Lemke, Angela; Xu, Zhiqiang; Klaas, Amanda; Brehler, Michael; Flister, Michael J; Laviolette, Peter S; Gore, Elizabeth M; Bergom, Carmen.
Affiliation
  • Ibrahim EH; Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
  • Baruah D; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
  • Croisille P; Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
  • Stojanovska J; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
  • Rubenstein JC; Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
  • Frei A; Jean-Monnet University, 10 Rue Trefilerie, 42100 Saint-Etienne, France.
  • Schlaak RA; University of Michigan, 500 S State St, Ann Arbor, MI 48109, USA.
  • Lin CY; Department of Medicine, Division of Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
  • Pipke JL; Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
  • Lemke A; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
  • Xu Z; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.
  • Klaas A; Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
  • Brehler M; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
  • Flister MJ; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA.
  • Laviolette PS; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA.
  • Gore EM; Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
  • Bergom C; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
JACC CardioOncol ; 3(1): 113-130, 2021 Mar.
Article in En | MEDLINE | ID: mdl-33912843
ABSTRACT

BACKGROUND:

Over half of all cancer patients receive radiation therapy (RT). However, radiation exposure to the heart can cause cardiotoxicity. Nevertheless, there is a paucity of data on RT-induced cardiac damage, with limited understanding of safe regional RT doses, early detection, prevention and management. A common initial feature of cardiotoxicity is asymptomatic dysfunction, which if left untreated may progress to heart failure. The current paradigm for cardiotoxicity detection and management relies primarily upon assessment of ejection fraction (EF). However, cardiac injury can occur without a clear change in EF.

OBJECTIVES:

To identify magnetic resonance imaging (MRI) markers of early RT-induced cardiac dysfunction.

METHODS:

We investigated the effect of RT on global and regional cardiac function and myocardial T1/T2 values at two timepoints post-RT using cardiac MRI in a rat model of localized cardiac RT. Rats who received image-guided whole-heart radiation of 24Gy were compared to sham-treated rats.

RESULTS:

The rats maintained normal global cardiac function post-RT. However, a deterioration in strain was particularly notable at 10-weeks post RT, and changes in circumferential strain were larger than changes in radial or longitudinal strain. Compared to sham, circumferential strain changes occurred at the basal, mid-ventricular and apical levels (p<0.05 for all at both 8-weeks and 10-weeks post-RT), most of the radial strain changes occurred at the mid-ventricular (p=0.044 at 8-weeks post-RT) and basal (p=0.018 at 10-weeks post-RT) levels, and most of the longitudinal strain changes occurred at the apical (p=0.002 at 8-weeks post-RT) and basal (p=0.035 at 10-weeks post-RT) levels. Regionally, lateral myocardial segments showed the greatest worsening in strain measurements, and histologic changes supported these findings. Despite worsened myocardial strain post-RT, myocardial tissue displacement measures were maintained, or even increased. T1/T2 measurements showed small non-significant changes post-RT compared to values in non-irradiated rats.

CONCLUSIONS:

Our findings suggest MRI regional myocardial strain is a sensitive imaging biomarker for detecting RT-induced subclinical cardiac dysfunction prior to compromise of global cardiac function.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Diagnostic_studies / Prognostic_studies / Screening_studies Language: En Journal: JACC CardioOncol Year: 2021 Type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Diagnostic_studies / Prognostic_studies / Screening_studies Language: En Journal: JACC CardioOncol Year: 2021 Type: Article Affiliation country: United States