Your browser doesn't support javascript.
loading
Learning Brain Dynamics With Coupled Low-Dimensional Nonlinear Oscillators and Deep Recurrent Networks.
Abrevaya, Germán; Dumas, Guillaume; Aravkin, Aleksandr Y; Zheng, Peng; Gagnon-Audet, Jean-Christophe; Kozloski, James; Polosecki, Pablo; Lajoie, Guillaume; Cox, David; Dawson, Silvina Ponce; Cecchi, Guillermo; Rish, Irina.
Affiliation
  • Abrevaya G; Departamento de Física, FCEyN, UBA and IFIBA, CONICET, 1428 Buenos Aires, Argentina gabrevaya@df.uba.ar.
  • Dumas G; Mila-Quebec Artificial Intelligence Institute, and CHU Sainte-Justine Research Center, Department of Psychiatry, Universitéde Montréal, Montreal H3A OE8, Canada guillaume.dumas@ppsp.team.
  • Aravkin AY; University of Washington, Seattle, WA 98195, U.S.A. saravkin@uw.edu.
  • Zheng P; University of Washington, Seattle, WA 98195, U.S.A. zhengp@uw.edu.
  • Gagnon-Audet JC; Mila-Quebec Artificial Intelligence Institute, Universitéde Montréal, Montreal H3A OE8, Canada jean-christophe.gagnon-audet@mila.quebec.
  • Kozloski J; IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, U.S.A. kozloski@us.ibm.com.
  • Polosecki P; IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, U.S.A. pipolose@us.ibm.com.
  • Lajoie G; Mila-Quebec Artificial Intelligence Institute, Universitéde Montréal, Montreal H3A OE8, Canada g.lajoie@umontreal.ca.
  • Cox D; MIT-IBM Watson AI Lab, Cambridge, MA 02139, U.S.A. David.D.Cox@ibm.com.
  • Dawson SP; Departamento de Física, FCEyN, UBA and IFIBA, CONICET, 1428 Buenos Aires, Argentina silvina@df.uba.ar.
  • Cecchi G; IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, U.S.A. gcecchi@us.ibm.com.
  • Rish I; Mila-Quebec Artificial Intelligence Institute, Université de Montréal, Montreal H3A OE8, Canada irina.rish@mila.quebec.
Neural Comput ; 33(8): 2087-2127, 2021 07 26.
Article in En | MEDLINE | ID: mdl-34310676
ABSTRACT
Many natural systems, especially biological ones, exhibit complex multivariate nonlinear dynamical behaviors that can be hard to capture by linear autoregressive models. On the other hand, generic nonlinear models such as deep recurrent neural networks often require large amounts of training data, not always available in domains such as brain imaging; also, they often lack interpretability. Domain knowledge about the types of dynamics typically observed in such systems, such as a certain type of dynamical systems models, could complement purely data-driven techniques by providing a good prior. In this work, we consider a class of ordinary differential equation (ODE) models known as van der Pol (VDP) oscil lators and evaluate their ability to capture a low-dimensional representation of neural activity measured by different brain imaging modalities, such as calcium imaging (CaI) and fMRI, in different living organisms larval zebrafish, rat, and human. We develop a novel and efficient approach to the nontrivial problem of parameters estimation for a network of coupled dynamical systems from multivariate data and demonstrate that the resulting VDP models are both accurate and interpretable, as VDP's coupling matrix reveals anatomically meaningful excitatory and inhibitory interactions across different brain subsystems. VDP outperforms linear autoregressive models (VAR) in terms of both the data fit accuracy and the quality of insight provided by the coupling matrices and often tends to generalize better to unseen data when predicting future brain activity, being comparable to and sometimes better than the recurrent neural networks (LSTMs). Finally, we demonstrate that our (generative) VDP model can also serve as a data-augmentation tool leading to marked improvements in predictive accuracy of recurrent neural networks. Thus, our work contributes to both basic and applied dimensions of neuroimaging gaining scientific insights and improving brain-based predictive models, an area of potentially high practical importance in clinical diagnosis and neurotechnology.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Zebrafish / Brain Type of study: Prognostic_studies Limits: Animals Language: En Journal: Neural Comput Journal subject: INFORMATICA MEDICA Year: 2021 Type: Article Affiliation country: Argentina

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Zebrafish / Brain Type of study: Prognostic_studies Limits: Animals Language: En Journal: Neural Comput Journal subject: INFORMATICA MEDICA Year: 2021 Type: Article Affiliation country: Argentina