Your browser doesn't support javascript.
loading
A Retinoic Acid Receptor ß 2 Agonist Improves Cardiac Function in a Heart Failure Model.
Tang, Xiao-Han; Gambardella, Jessica; Jankauskas, Stanislovas; Wang, Xujun; Santulli, Gaetano; Gudas, Lorraine J; Levi, Roberto.
Affiliation
  • Tang XH; Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.).
  • Gambardella J; Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.).
  • Jankauskas S; Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.).
  • Wang X; Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.).
  • Santulli G; Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.).
  • Gudas LJ; Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.).
  • Levi R; Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.) rlevi@med.cornell.edu.
J Pharmacol Exp Ther ; 379(2): 182-190, 2021 11.
Article in En | MEDLINE | ID: mdl-34389654
We previously demonstrated that the selective retinoic acid receptor (RAR) ß 2 agonist AC261066 reduces oxidative stress in an ex vivo murine model of ischemia/reperfusion. We hypothesized that by decreasing oxidative stress and consequent fibrogenesis, AC261066 could attenuate the development of contractile dysfunction in post-ischemic heart failure (HF). We tested this hypothesis in vivo using an established murine model of myocardial infarction (MI), obtained by permanent occlusion of the left anterior descending coronary artery. Treating mice with AC261066 in drinking water significantly attenuated the post-MI deterioration of echocardiographic indices of cardiac function, diminished remodeling, and reduced oxidative stress, as evidenced by a decrease in malondialdehyde level and p38 mitogen-activated protein kinase expression in cardiomyocytes. The effects of AC261066 were also associated with a decrease in interstitial fibrosis, as shown by a marked reduction in collagen deposition and α-smooth muscle actin expression. In cardiac murine fibroblasts subjected to hypoxia, AC261066 reversed hypoxia-induced decreases in superoxide dismutase 2 and angiopoietin-like 4 transcriptional levels as well as the increase in NADPH oxidase 2 mRNA, demonstrating that the post-MI cardioprotective effects of AC261066 are associated with an action at the fibroblast level. Thus, AC261066 alleviates post-MI cardiac dysfunction by modulating a set of genes involved in the oxidant/antioxidant balance. These AC261066 responsive genes diminish interstitial fibrogenesis and remodeling. Since MI is a recognized major cause of HF, our data identify RARß 2 as a potential pharmacological target in the treatment of HF. SIGNIFICANCE STATEMENT: A previous report showed that the selective retinoic acid receptor (RAR) ß 2 agonist AC261066 reduces oxidative stress in an ex vivo murine model of ischemia/reperfusion. This study shows that AC261066 attenuates the development of contractile dysfunction and maladaptive remodeling in post-ischemic heart failure (HF) by modulating a set of genes involved in oxidant/antioxidant balance. Since myocardial infarction is a recognized major cause of HF, these data identify RARß 2 as a potential pharmacological target in the treatment of HF.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Thiazoles / Benzoates / Receptors, Retinoic Acid / Disease Models, Animal / Heart Failure Limits: Animals Language: En Journal: J Pharmacol Exp Ther Year: 2021 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Thiazoles / Benzoates / Receptors, Retinoic Acid / Disease Models, Animal / Heart Failure Limits: Animals Language: En Journal: J Pharmacol Exp Ther Year: 2021 Type: Article