Your browser doesn't support javascript.
loading
Multifunctional Electrospun Nanofibers Based on Biopolymer Blends and Magnetic Tubular Halloysite for Medical Applications.
Khunová, Viera; Pavlinák, David; Safarík, Ivo; Skrátek, Martin; Ondreás, Frantisek.
Affiliation
  • Khunová V; Faculty of Food and Chemical Technology, Institute of Natural and Synthetic Polymers, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia.
  • Pavlinák D; CEPLANT, Department of Physical Electronics, Masaryk University, Kotlárská 267/2, 611 37 Brno, Czech Republic.
  • Safarík I; Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sádkách 7, 370 05 Ceské Budejovice, Czech Republic.
  • Skrátek M; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
  • Ondreás F; Institute of Measurement Science, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia.
Polymers (Basel) ; 13(22)2021 Nov 09.
Article in En | MEDLINE | ID: mdl-34833169
ABSTRACT
Tubular halloysite (HNT) is a naturally occurring aluminosilicate clay with a unique combination of natural availability, good biocompatibility, high mechanical strength, and functionality. This study explored the effects of magnetically responsive halloysite (MHNT) on the structure, morphology, chemical composition, and magnetic and mechanical properties of electrospun nanofibers based on polycaprolactone (PCL) and gelatine (Gel) blends. MHNT was prepared via a simple modification of HNT with a perchloric-acid-stabilized magnetic fluid-methanol mixture. PCL/Gel nanofibers containing 6, 9, and 12 wt.% HNT and MHNT were prepared via an electrospinning process, respecting the essential rules for medical applications. The structure and properties of the prepared nanofibers were studied using infrared spectroscopy (ATR-FTIR) and electron microscopy (SEM, STEM) along with energy-dispersive X-ray spectroscopy (EDX), magnetometry, and mechanical analysis. It was found that the incorporation of the studied concentrations of MHNT into PCL/Gel nanofibers led to soft magnetic biocompatible materials with a saturation magnetization of 0.67 emu/g and coercivity of 15 Oe for nanofibers with 12 wt.% MHNT. Moreover, by applying both HNT and MHNT, an improvement of the nanofibers structure was observed, together with strong reinforcing effects. The greatest improvement was observed for nanofibers containing 9 wt.% MHNT when increases in tensile strength reached more than two-fold and the elongation at break reached a five-fold improvement.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Polymers (Basel) Year: 2021 Type: Article Affiliation country: Slovakia

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Polymers (Basel) Year: 2021 Type: Article Affiliation country: Slovakia