Your browser doesn't support javascript.
loading
eHooke: A tool for automated image analysis of spherical bacteria based on cell cycle progression.
Saraiva, Bruno M; Krippahl, Ludwig; Filipe, Sérgio R; Henriques, Ricardo; Pinho, Mariana G.
Affiliation
  • Saraiva BM; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
  • Krippahl L; NOVA LINCS, Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
  • Filipe SR; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
  • Henriques R; UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
  • Pinho MG; Instituto Gulbenkian de Ciência, Oeiras, Portugal.
Biol Imaging ; 1: e3, 2021.
Article in En | MEDLINE | ID: mdl-35036921
Fluorescence microscopy is a critical tool for cell biology studies on bacterial cell division and morphogenesis. Because the analysis of fluorescence microscopy images evolved beyond initial qualitative studies, numerous images analysis tools were developed to extract quantitative parameters on cell morphology and organization. To understand cellular processes required for bacterial growth and division, it is particularly important to perform such analysis in the context of cell cycle progression. However, manual assignment of cell cycle stages is laborious and prone to user bias. Although cell elongation can be used as a proxy for cell cycle progression in rod-shaped or ovoid bacteria, that is not the case for cocci, such as Staphylococcus aureus. Here, we describe eHooke, an image analysis framework developed specifically for automated analysis of microscopy images of spherical bacterial cells. eHooke contains a trained artificial neural network to automatically classify the cell cycle phase of individual S. aureus cells. Users can then apply various functions to obtain biologically relevant information on morphological features of individual cells and cellular localization of proteins, in the context of the cell cycle.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Qualitative_research Language: En Journal: Biol Imaging Year: 2021 Type: Article Affiliation country: Portugal

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Qualitative_research Language: En Journal: Biol Imaging Year: 2021 Type: Article Affiliation country: Portugal