Oxidative Transformation of Dihydroflavonols and Flavan-3-ols by Anthocyanidin Synthase from Vitis vinifera.
Molecules
; 27(3)2022 Feb 03.
Article
in En
| MEDLINE
| ID: mdl-35164310
Twelve polyphenols from three distinct families (dihydroflavonols, flavan-3-ols, and flavanones) were studied as potential substrates of anthocyanidin synthase from Vitis vinifera (VvANS). Only flavan-3-ols of (2R,3S) configuration having either a catechol or gallol group on ring B are accepted as substrates. Only dihydroflavonols of (2R,3R) configuration are accepted as substrates, but a catechol or gallol group is not mandatory. Flavanones are not substrates of VvANS. HPLC and MS/MS analyses of the enzymatic products showed that the VvANS-catalyzed oxidative transformation of (+)-dihydroflavonols, such as dihydroquercetin, dihydrokaempferol and dihydromyricetin, leads only to the corresponding flavonols. Among the flavan-3-ols recognized as substrates, (+)-gallocatechin was only transformed into delphinidin by VvANS, whereas (+)-catechin was transformed into three products, including two major products that were an ascorbate-cyanidin adduct and a dimer of oxidized catechin, and a minor product that was cyanidin. Data from real-time MS monitoring of the enzymatic transformation of (+)-catechin suggest that its products are all derived from the initial C3-hydroxylation intermediate, i.e., a 3,3-gem-diol, and their most likely formation mechanism is discussed.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Oxygenases
/
Plant Proteins
/
Vitis
/
Flavonols
Language:
En
Journal:
Molecules
Journal subject:
BIOLOGIA
Year:
2022
Type:
Article
Affiliation country:
France