Your browser doesn't support javascript.
loading
Simultaneous assessment of regional distributions of atrophy across the neuraxis in MS patients.
Freund, Patrick; Papinutto, Nico; Bischof, Antje; Azzarito, Michela; Kirkish, Gina; Ashburner, John; Thompson, Alan; Hauser, Stephen L; Henry, Roland G.
Affiliation
  • Freund P; Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom. Electronic address: patrick.freund@balgrist.ch.
  • Papinutto N; UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
  • Bischof A; UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
  • Azzarito M; Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
  • Kirkish G; UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
  • Ashburner J; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
  • Thompson A; Departments of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
  • Hauser SL; UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
  • Henry RG; UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
Neuroimage Clin ; 34: 102985, 2022.
Article in En | MEDLINE | ID: mdl-35316667
BACKGROUND: The ability to assess brain and cord atrophy simultaneously would improve the efficiency of MRI to track disease evolution. OBJECTIVE: To test a promising tool to simultaneously map the regional distribution of atrophy in multiple sclerosis (MS) patients across the brain and cord. METHODS: Voxel-based morphometry combined with a statistical parametric mapping probabilistic brain-spinal cord (SPM-BSC) template was applied to standard T1-weighted magnetic resonance imaging (MRI) scans covering the brain and cervical cord from 37 MS patients and 20 healthy controls (HC). We also measured the cord area at C2-C3 with a semi-automatic segmentation method using (i) the same T1-weighted acquisitions used for the new voxel-based analysis and (ii) dedicated spinal cord phase sensitive inversion recovery (PSIR) acquisitions. Cervical cord findings derived from the three approaches were compared to each other and the goodness to fit to clinical scores was assessed by regression analyses. RESULTS: The SPM-BSC approach revealed a severity-dependent pattern of atrophy across the cervical cord and thalamus in MS patients when compared to HCs. The magnitude of cord atrophy was confirmed by the semi-automatic extraction approach at C2-C3 using both standard brain T1-weighted and advanced cord dedicated acquisitions. Associations between atrophy of cord and thalamus with disability and cognition were demonstrated. CONCLUSION: Atrophy in the brain and cervical cord of MS patients can be identified simultaneously and rapidly at the voxel-level. The SPM-BSC approach yields similar results as available standard processing tools with the added advantage of performing the analysis simultaneously and faster.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cervical Cord / Multiple Sclerosis Type of study: Prognostic_studies Limits: Humans Language: En Journal: Neuroimage Clin Year: 2022 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cervical Cord / Multiple Sclerosis Type of study: Prognostic_studies Limits: Humans Language: En Journal: Neuroimage Clin Year: 2022 Type: Article