Atomically Dispersed NiN3 Sites on Highly Defective Micro-Mesoporous Carbon for Superior CO2 Electroreduction.
Small
; 18(20): e2107997, 2022 May.
Article
in En
| MEDLINE
| ID: mdl-35445554
Direct electrochemical conversion of CO2 to CO product powered by renewable electricity is widely advocated as an emerging strategy for alleviating CO2 emissions while addressing global energy issues. However, the development of low-cost and efficient electrocatalysts with high Faradaic efficiency for CO production (FECO ) and high current density remains a grand challenge. Herein, a robust single nickel atomic site electrocatalyst, which features isolated and dense single atomic NiN3 sites anchored on highly defective hierarchically micro-mesoporous carbon (Ni-SAs/HMMNC-800), to enable enhanced charge transport and more exposed active sites for catalyzing electrochemical CO2 -to-CO conversion, is reported. The Ni-SAs/HMMNC-800 catalyst achieves excellent activity and selectivity with high FECO values of >90% throughout a wide potential range (the FECO reaches 99.5% at -0.7 V vs reversible hydrogen electrode) and a CO partial current density as high as 13.0 mA cm-2 at -0.7 V versus reversible hydrogen electrode, as well as a far outstanding durability during long-term continuous operation, indicating a superior CO2 electroreduction performance than that of other reference samples and most of previously reported carbon-based single atom electrocatalysts. Experimental and density functional theory calculations reveal that atomic NiN3 coordination sites coupled adjacent defects are favorable to significantly enhancing the formation of COOH* reaction intermediates while suppressing the competing hydrogen evolution reaction, thereby enhancing the electrocatalytic activity for CO2 -to-CO reduction. Notably, this work provides a valuable new prospect for designing and synthesizing efficient and cost-effective single atom CO2 electroreduction catalysts for practical applications.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Small
Journal subject:
ENGENHARIA BIOMEDICA
Year:
2022
Type:
Article