Your browser doesn't support javascript.
loading
CalFitter 2.0: Leveraging the power of singular value decomposition to analyse protein thermostability.
Kunka, Antonin; Lacko, David; Stourac, Jan; Damborsky, Jiri; Prokop, Zbynek; Mazurenko, Stanislav.
Affiliation
  • Kunka A; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.
  • Lacko D; International Centre for Clinical Research, St. Anne's University Hospital Brno, Brno, Czech Republic.
  • Stourac J; Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic.
  • Damborsky J; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.
  • Prokop Z; International Centre for Clinical Research, St. Anne's University Hospital Brno, Brno, Czech Republic.
  • Mazurenko S; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.
Nucleic Acids Res ; 50(W1): W145-W151, 2022 07 05.
Article in En | MEDLINE | ID: mdl-35580052
ABSTRACT
The importance of the quantitative description of protein unfolding and aggregation for the rational design of stability or understanding the molecular basis of protein misfolding diseases is well established. Protein thermostability is typically assessed by calorimetric or spectroscopic techniques that monitor different complementary signals during unfolding. The CalFitter webserver has already proved integral to deriving invaluable energy parameters by global data analysis. Here, we introduce CalFitter 2.0, which newly incorporates singular value decomposition (SVD) of multi-wavelength spectral datasets into the global fitting pipeline. Processed time- or temperature-evolved SVD components can now be fitted together with other experimental data types. Moreover, deconvoluted basis spectra provide spectral fingerprints of relevant macrostates populated during unfolding, which greatly enriches the information gains of the CalFitter output. The SVD analysis is fully automated in a highly interactive module, providing access to the results to users without any prior knowledge of the underlying mathematics. Additionally, a novel data uploading wizard has been implemented to facilitate rapid and easy uploading of multiple datasets. Together, the newly introduced changes significantly improve the user experience, making this software a unique, robust, and interactive platform for the analysis of protein thermal denaturation data. The webserver is freely accessible at https//loschmidt.chemi.muni.cz/calfitter.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Proteins / Protein Unfolding Language: En Journal: Nucleic Acids Res Year: 2022 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Proteins / Protein Unfolding Language: En Journal: Nucleic Acids Res Year: 2022 Type: Article