Your browser doesn't support javascript.
loading
Can machine learning predict pharmacotherapy outcomes? An application study in osteoporosis.
Lin, Yi-Ting; Chu, Chao-Yu; Hung, Kuo-Sheng; Lu, Chi-Hua; Bednarczyk, Edward M; Chen, Hsiang-Yin.
Affiliation
  • Lin YT; Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, No. 250 Wuxing St., Xinyi District, Taipei 11031, Taiwan.
  • Chu CY; Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, No. 250 Wuxing St., Xinyi District, Taipei 11031, Taiwan.
  • Hung KS; Department of Neurosurgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
  • Lu CH; Department of Pharmacy Practice, University at Buffalo School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA.
  • Bednarczyk EM; Department of Pharmacy Practice, University at Buffalo School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA.
  • Chen HY; Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, No. 250 Wuxing St., Xinyi District, Taipei 11031, Taiwan; Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. Electronic address: shawn@tmu.edu.tw.
Comput Methods Programs Biomed ; 225: 107028, 2022 Oct.
Article in En | MEDLINE | ID: mdl-35930862
BACKGROUND AND OBJECTIVE: The specific aim of this study is to develop machine learning models as a clinical approach for personalized treatment of osteoporosis. The model performance on outcome prediction was compared between four machine learning algorithms. METHODS: Retrospective, electronic clinical data for patients with suspected or confirmed osteoporosis treated at Wan Fang Hospital between 2011 to 2018 were used as inputs for building the following predictive machine learning models,i.e., artificial neural network (ANN), random forest (RF), support vector machine (SVM) and logistic regression (LR) models. The predicted outcome was defined as an increase/decrease in T-score after treatment. A genetic algorithm was employed to select relevant variables as input features for each model; the leave-one-out method was applied for model building and internal validation. The model with best performance was selected by a separate set of testing. Area under the receiver operating characteristic curve, accuracy, precision, sensitivity and F1 score were calculated to evaluate model performance. Main analysis for all the patients with subclinical or confirmed osteoporosis and subgroup analysis for the patients with confirmed osteoporosis (T score < -2.5) were carried out in this study. RESULTS: A genetic algorithm was employed to select 12 to 18 features from all 33 variables for the four models. No difference was found in accuracy (ANN, 71.7%; LR, 70.0%; RF, 75.0%; SVM, 66.7%), precision (ANN, 80.0%; LR, 59.3%; RF, 70.0%; SVM, 63.6%), and AUC (ANN, 0.709; LR, 0.731; RF, 0.719; SVM, 0.702) among the ANN, LR, RF and SVM models. Main analysis in performance revealed significant recall in the LR model, as compared to ANN and SVM model; while subgroup revealed significant recall in ANN model, compared to LR and SVM model. CONCLUSIONS: Machine learning-based models hold potential in forecasting the outcomes of treatment for osteoporosis via early initiation of first-line therapy for patients with subclinical disease; or a switch to second-line treatment for patients with a high risk of impending treatment failure. This convenient approach can assist clinicians in adjusting treatment tailored to individual patient for prevention of disease progression or ineffective therapy.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Osteoporosis / Machine Learning Type of study: Observational_studies / Prognostic_studies / Risk_factors_studies Limits: Humans Language: En Journal: Comput Methods Programs Biomed Journal subject: INFORMATICA MEDICA Year: 2022 Type: Article Affiliation country: Taiwan

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Osteoporosis / Machine Learning Type of study: Observational_studies / Prognostic_studies / Risk_factors_studies Limits: Humans Language: En Journal: Comput Methods Programs Biomed Journal subject: INFORMATICA MEDICA Year: 2022 Type: Article Affiliation country: Taiwan