Your browser doesn't support javascript.
loading
Discovery of novel druggable pockets on polyomavirus VP1 through crystallographic fragment-based screening to develop capsid assembly inhibitors.
Osipov, Evgenii M; Munawar, Ali H; Beelen, Steven; Fearon, Daren; Douangamath, Alice; Wild, Conor; Weeks, Stephen D; Van Aerschot, Arthur; von Delft, Frank; Strelkov, Sergei V.
Affiliation
  • Osipov EM; Biocrystallography, KU Leuven Herestraat 49 Leuven Belgium sergei.strelkov@kuleuven.be.
  • Munawar AH; Biocrystallography, KU Leuven Herestraat 49 Leuven Belgium sergei.strelkov@kuleuven.be.
  • Beelen S; Orthogon Therapeutics LLC 45 Dan Road Suite 126 Canton MA 02021 USA.
  • Fearon D; Pledge Tx B.V. Gaston Geenslaan 1 Leuven Belgium.
  • Douangamath A; Biocrystallography, KU Leuven Herestraat 49 Leuven Belgium sergei.strelkov@kuleuven.be.
  • Wild C; Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot UK.
  • Weeks SD; Research Complex at Harwell, Harwell Science and Innovation Campus Didcot OX11 0FA UK.
  • Van Aerschot A; Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot UK.
  • von Delft F; Research Complex at Harwell, Harwell Science and Innovation Campus Didcot OX11 0FA UK.
  • Strelkov SV; Centre for Medicines Discovery, University of Oxford South Parks Road Headington OX3 7DQ UK.
RSC Chem Biol ; 3(8): 1013-1027, 2022 Aug 03.
Article in En | MEDLINE | ID: mdl-35974998
Polyomaviruses are a family of ubiquitous double-stranded DNA viruses many of which are human pathogens. These include BK polyomavirus which causes severe urinary tract infection in immunocompromised patients and Merkel cell polyomavirus associated with aggressive cancers. The small genome of polyomaviruses lacks conventional drug targets, and no specific drugs are available at present. Here we focus on the main structural protein VP1 of BK polyomavirus which is responsible for icosahedral capsid formation. To provide a foundation towards rational drug design, we crystallized truncated VP1 pentamers and subjected them to a high-throughput screening for binding drug-like fragments through a direct X-ray analysis. To enable a highly performant screening, rigorous optimization of the crystallographic pipeline and processing with the latest generation PanDDA2 software were necessary. As a result, a total of 144 binding hits were established. Importantly, the hits are well clustered in six surface pockets. Three pockets are located on the outside of the pentamer and map on the regions where the 'invading' C-terminal arm of another pentamer is attached upon capsid assembly. Another set of three pockets is situated within the wide pore along the five-fold axis of the VP1 pentamer. These pockets are situated at the interaction interface with the minor capsid protein VP2 which is indispensable for normal functioning of the virus. Here we systematically analyse the three outside pockets which are highly conserved across various polyomaviruses, while point mutations in these pockets are detrimental for viral replication. We show that one of the pockets can accommodate antipsychotic drug trifluoperazine. For each pocket, we derive pharmacophore features which enable the design of small molecules preventing the interaction between VP1 pentamers and therefore inhibiting capsid assembly. Our data lay a foundation towards a rational development of first-in-class drugs targeting polyomavirus capsid.

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Diagnostic_studies / Screening_studies Language: En Journal: RSC Chem Biol Year: 2022 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Diagnostic_studies / Screening_studies Language: En Journal: RSC Chem Biol Year: 2022 Type: Article