Your browser doesn't support javascript.
loading
Naringenin Attenuates Cognitive Impairment in a Rat Model of Vascular Dementia by Inhibiting Hippocampal Oxidative Stress and Inflammatory Response and Promoting N-Methyl-D-Aspartate Receptor Signaling Pathway.
Zhang, Jin; Zhang, Yu; Liu, Yan; Niu, Xiaoyuan.
Affiliation
  • Zhang J; Department of Neurology, The First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Yingze District, Taiyuan, 030000, Shanxi, People's Republic of China.
  • Zhang Y; Department of Neurology, Shanxi Hospital of Integrated Traditional and Western Medicine, Taiyuan, 030000, Shanxi, People's Republic of China.
  • Liu Y; Department of Neurology, The First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Yingze District, Taiyuan, 030000, Shanxi, People's Republic of China.
  • Niu X; Department of Neurology, The First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Yingze District, Taiyuan, 030000, Shanxi, People's Republic of China. Niuxy01002@126.com.
Neurochem Res ; 47(11): 3402-3413, 2022 Nov.
Article in En | MEDLINE | ID: mdl-36028734
Vascular dementia (VaD) is the second most common form of dementia globally, yet there are no efficient treatments. Naringenin, a natural flavonoid, exerts antioxidative, anti-inflammatory, and neuroprotective properties; however, its potential effect on VaD remain unclear. Herein, the purpose of present study was to elucidate whether naringenin attenuates cognitive dysfunction in VaD via inhibiting hippocampal oxidative stress and inflammatory response, and promoting N-methyl-D-aspartate receptors (NMDARs) signaling pathway. A rat model of VaD was established by permanent bilateral common carotid artery occlusion [2-vessel occlusion (2VO)]. Behavioral performance analyses results revealed that administration of naringenin improves cognitive impairment in rats with VaD according to the new object recognition test and the Morris water maze test. In addition, naringenin attenuated hippocampal oxidative stress by reducing reactive oxygen species generation, decreasing malondialdehyde content and recombinant reactive oxygen species modulator 1 (Romo-1) expression, and increasing superoxide dismutase and glutathione peroxidase activities in the hippocampus of VaD rats. Moreover, naringenin decreased the proinflammatory cytokines (IL-1ß, IL-6, and TNF-α) levels and increased the anti-inflammatory cytokines (IL-10 and IL-4) levels in the hippocampus of 2VO surgery-treated rats, attenuating hippocampal inflammatory response during VaD. Furthermore, naringenin promoted synaptophysin (SYP), postsynaptic density protein 95 (PSD95), N-methyl-Daspartic acid receptor 1 (NR1) and N-methyl-D-aspartate receptor subunit 2B (NR2B) expressions levels in hippocampus of VaD rats. Collectively, these findings indicated that naringenin mitigates cognitive impairment in VaD rats partly via inhibiting hippocampal oxidative stress and inflammatory response and restoring NMDARs signaling pathway.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Dementia, Vascular / Flavanones / Cognitive Dysfunction Type of study: Prognostic_studies Limits: Animals Language: En Journal: Neurochem Res Year: 2022 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Dementia, Vascular / Flavanones / Cognitive Dysfunction Type of study: Prognostic_studies Limits: Animals Language: En Journal: Neurochem Res Year: 2022 Type: Article