Your browser doesn't support javascript.
loading
Charge Separation in BaTiO3 Nanocrystals: Spontaneous Polarization Versus Point Defect Chemistry.
Neige, Ellie; Schwab, Thomas; Musso, Maurizio; Berger, Thomas; Bourret, Gilles R; Diwald, Oliver.
Affiliation
  • Neige E; Department of Chemistry and Physics of Materials, Paris-Lodron Universität Salzburg, Jakob-Haringerstrasse 2a, Salzburg, 5020, Austria.
  • Schwab T; Department of Chemistry and Physics of Materials, Paris-Lodron Universität Salzburg, Jakob-Haringerstrasse 2a, Salzburg, 5020, Austria.
  • Musso M; Department of Chemistry and Physics of Materials, Paris-Lodron Universität Salzburg, Jakob-Haringerstrasse 2a, Salzburg, 5020, Austria.
  • Berger T; Department of Chemistry and Physics of Materials, Paris-Lodron Universität Salzburg, Jakob-Haringerstrasse 2a, Salzburg, 5020, Austria.
  • Bourret GR; Department of Chemistry and Physics of Materials, Paris-Lodron Universität Salzburg, Jakob-Haringerstrasse 2a, Salzburg, 5020, Austria.
  • Diwald O; Department of Chemistry and Physics of Materials, Paris-Lodron Universität Salzburg, Jakob-Haringerstrasse 2a, Salzburg, 5020, Austria.
Small ; 19(16): e2206805, 2023 Apr.
Article in En | MEDLINE | ID: mdl-36683239
ABSTRACT
The fate of photogenerated charges within ferroelectric metal oxides is key for photocatalytic applications. The authors study the contributions of i) tetragonal distortion, responsible for spontaneous polarization, and ii) point defects, on charge separation and recombination within BaTiO3 (BTO) nanocrystals of cubic and tetragonal structure. Electron paramagnetic resonance (EPR) in combination with O2 photoadsorption experiments show that BTO nanocrystals annealed at 600 °C have a charge separation yield enhanced by a factor > 10 compared to TiO2 anatase nanocrystals of similar geometries. This demonstrates for the first time the beneficial effect of the BTO perovskite nanocrystal lattice on charge separation. Strikingly, charge separation is considerably hindered within BTO nanoparticles annealed ≥ 600 °C, due to the formation of Ba-O divacancies that act as charge recombination centers. The opposing interplay between tetragonal distortion and annealing-induced defect formation inside the lattice highlights the importance of defect engineering within perovskite nanoparticles.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Small Journal subject: ENGENHARIA BIOMEDICA Year: 2023 Type: Article Affiliation country: Austria

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Small Journal subject: ENGENHARIA BIOMEDICA Year: 2023 Type: Article Affiliation country: Austria