Your browser doesn't support javascript.
loading
The Wnt/TCF7L1 transcriptional repressor axis drives primitive endoderm formation by antagonizing naive and formative pluripotency.
Athanasouli, Paraskevi; Balli, Martina; De Jaime-Soguero, Anchel; Boel, Annekatrien; Papanikolaou, Sofia; van der Veer, Bernard K; Janiszewski, Adrian; Vanhessche, Tijs; Francis, Annick; El Laithy, Youssef; Nigro, Antonio Lo; Aulicino, Francesco; Koh, Kian Peng; Pasque, Vincent; Cosma, Maria Pia; Verfaillie, Catherine; Zwijsen, An; Heindryckx, Björn; Nikolaou, Christoforos; Lluis, Frederic.
Affiliation
  • Athanasouli P; KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium.
  • Balli M; KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium.
  • De Jaime-Soguero A; KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium. anchel.dejaime@cos.uni-heidelberg.de.
  • Boel A; Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department for Human Structure and Repair, Ghent University Hospital, 9000, Ghent, Belgium.
  • Papanikolaou S; Department of Rheumatology, Clinical Immunology, Medical School, University of Crete, 70013, Heraklion, Greece.
  • van der Veer BK; Computational Genomics Group, Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Athens, Greece.
  • Janiszewski A; KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium.
  • Vanhessche T; KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium.
  • Francis A; KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium.
  • El Laithy Y; Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium.
  • Nigro AL; KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium.
  • Aulicino F; KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium.
  • Koh KP; Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003, Barcelona, Spain.
  • Pasque V; KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium.
  • Cosma MP; KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium.
  • Verfaillie C; KU Leuven Institute for Single-Cell Omics (LISCO), 3000, Leuven, Belgium.
  • Zwijsen A; Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003, Barcelona, Spain.
  • Heindryckx B; ICREA, Pg. Lluis Companys 23, Barcelona, 08010, Spain.
  • Nikolaou C; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
  • Lluis F; KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium.
Nat Commun ; 14(1): 1210, 2023 03 03.
Article in En | MEDLINE | ID: mdl-36869101
ABSTRACT
Early during preimplantation development and in heterogeneous mouse embryonic stem cells (mESC) culture, pluripotent cells are specified towards either the primed epiblast or the primitive endoderm (PE) lineage. Canonical Wnt signaling is crucial for safeguarding naive pluripotency and embryo implantation, yet the role and relevance of canonical Wnt inhibition during early mammalian development remains unknown. Here, we demonstrate that transcriptional repression exerted by Wnt/TCF7L1 promotes PE differentiation of mESCs and in preimplantation inner cell mass. Time-series RNA sequencing and promoter occupancy data reveal that TCF7L1 binds and represses genes encoding essential naive pluripotency factors and indispensable regulators of the formative pluripotency program, including Otx2 and Lef1. Consequently, TCF7L1 promotes pluripotency exit and suppresses epiblast lineage formation, thereby driving cells into PE specification. Conversely, TCF7L1 is required for PE specification as deletion of Tcf7l1 abrogates PE differentiation without restraining epiblast priming. Taken together, our study underscores the importance of transcriptional Wnt inhibition in regulating lineage specification in ESCs and preimplantation embryo development as well as identifies TCF7L1 as key regulator of this process.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Automobile Driving / Endoderm / Transcription Factor 7-Like 1 Protein Type of study: Prognostic_studies Limits: Animals / Pregnancy Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2023 Type: Article Affiliation country: Belgium

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Automobile Driving / Endoderm / Transcription Factor 7-Like 1 Protein Type of study: Prognostic_studies Limits: Animals / Pregnancy Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2023 Type: Article Affiliation country: Belgium