Your browser doesn't support javascript.
loading
Extracting biomedical relation from cross-sentence text using syntactic dependency graph attention network.
Zhou, Xueyang; Fu, Qiming; Chen, Jianping; Liu, Lanhui; Wang, Yunzhe; Lu, You; Wu, Hongjie.
Affiliation
  • Zhou X; Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Province Key Laboratory of Intelligent Building Energy Efficiency, Suzhou University of Science and Technology, Suzhou 215009, China.
  • Fu Q; Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Province Key Laboratory of Intelligent Building Energy Efficiency, Suzhou University of Science and Technology, Suzhou 215009, China. Electronic address: fqm_1@126.com.
  • Chen J; Jiangsu Province Key Laboratory of Intelligent Building Energy Efficiency, Suzhou University of Science and Technology, Suzhou 215009, China; Architecture and Urban Planning, Suzhou University of Science and Technology, Suzhou 215009, China; Chongqing Industrial Big Data Innovation Center Co., Ltd.,
  • Liu L; Chongqing Industrial Big Data Innovation Center Co., Ltd., Chongqing 4007071, China.
  • Wang Y; Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Province Key Laboratory of Intelligent Building Energy Efficiency, Suzhou University of Science and Technology, Suzhou 215009, China.
  • Lu Y; Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Province Key Laboratory of Intelligent Building Energy Efficiency, Suzhou University of Science and Technology, Suzhou 215009, China.
  • Wu H; Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
J Biomed Inform ; 144: 104445, 2023 08.
Article in En | MEDLINE | ID: mdl-37467835
ABSTRACT
In biomedical literature, cross-sentence texts can usually express rich knowledge, and extracting the interaction relation between entities from cross-sentence texts is of great significance to biomedical research. However, compared with single sentence, cross-sentence text has a longer sequence length, so the research on cross-sentence text information extraction should focus more on learning the context dependency structural information. Nowadays, it is still a challenge to handle global dependencies and structural information of long sequences effectively, and graph-oriented modeling methods have received more and more attention recently. In this paper, we propose a new graph attention network guided by syntactic dependency relationship (SR-GAT) for extracting biomedical relation from the cross-sentence text. It allows each node to pay attention to other nodes in its neighborhood, regardless of the sequence length. The attention weight between nodes is given by a syntactic relation graph probability network (SR-GPR), which encodes the syntactic dependency between nodes and guides the graph attention mechanism to learn information about the dependency structure. The learned feature representation retains information about the node-to-node syntactic dependency, and can further discover global dependencies effectively. The experimental results demonstrate on a publicly available biomedical dataset that, our method achieves state-of-the-art performance while requiring significantly less computational resources. Specifically, in the "drug-mutation" relation extraction task, our method achieves an advanced accuracy of 93.78% for binary classification and 92.14% for multi-classification. In the "drug-gene-mutation" relation extraction task, our method achieves an advanced accuracy of 93.22% for binary classification and 92.28% for multi-classification. Across all relation extraction tasks, our method improves accuracy by an average of 0.49% compared to the existing best model. Furthermore, our method achieved an accuracy of 69.5% in text classification, surpassing most existing models, demonstrating its robustness in generalization across different domains without additional fine-tuning.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Biomedical Research / Language Language: En Journal: J Biomed Inform Journal subject: INFORMATICA MEDICA Year: 2023 Type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Biomedical Research / Language Language: En Journal: J Biomed Inform Journal subject: INFORMATICA MEDICA Year: 2023 Type: Article Affiliation country: China