A novel ternary Y-DNA walker amplification strategy designed fluorescence aptasensor based on Au@SiO2@Fe3O4 nanomaterials for ochratoxin A detection.
Mikrochim Acta
; 190(11): 443, 2023 10 17.
Article
in En
| MEDLINE
| ID: mdl-37848735
A novel ternary Y-DNA walker amplification strategy designed fluorescence aptasensor based on Au@SiO2@Fe3O4 nanomaterials for ultrasensitive and specific ochratoxin A detection in food samples is presented. Au@SiO2@Fe3O4 nanomaterials provide the loading platform as well as separation and recovery properties for the ternary Y-DNA walker. The ternary Y-DNA walker is designed to be driven by Nb.BbvCI cleaving a large number of FAM probes to achieve signal amplification. Since Ochratoxin A (OTA) can bind to the constituent aptamer in the ternary Y-DNA walker, adding OTA will destroy the structure of the ternary Y-DNA walker, thereby inhibiting the driving process of the walker. After optimization of various parameters, a standard curve was obtained from 100 to 0.05 ng·mL-1 of OTA with the limit of determination of 0.027 ng·mL-1. The spiked recovery of peanut samples by this method was 82.00-93.30%, and the aptasensor showed excellent specificity and long-term stability. This simple, robust, and scalable oligonucleotide chain-based ternary Y-DNA walker can provide a general signal amplification strategy for trace analysis.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Biosensing Techniques
/
Nanostructures
/
Aptamers, Nucleotide
Language:
En
Journal:
Mikrochim Acta
Year:
2023
Type:
Article
Affiliation country:
China