Constructing In2S3/CdS/N-rGO Hybrid Nanosheets via One-Pot Pyrolysis for Boosting and Stabilizing Visible Light-Driven Hydrogen Evolution.
Molecules
; 28(23)2023 Nov 30.
Article
in En
| MEDLINE
| ID: mdl-38067607
The construction of hybrid junctions remains challenging for the rational design of visible light-driven photocatalysts. Herein, In2S3/CdS/N-rGO hybrid nanosheets were successfully prepared via a one-step pyrolysis method using deep eutectic solvents as precursors. Benefiting from the surfactant-free pyrolysis method, the obtained ultrathin hybrid nanosheets assemble into stable three-dimensional self-standing superstructures. The tremella-like structure of hybrid In2S3/N-rGO exhibits excellent photocatalytic hydrogen production performance. The hydrogen evolution rate is 10.9 mmol·g-1·h-1, which is greatly superior to CdS/N-rGO (3.7 mmol·g-1·h-1) and In2S3/N-rGO (2.6 mmol·g-1·h-1). This work provides more opportunities for the rational design and fabrication of hybrid ultrathin nanosheets for broad catalytic applications in sustainable energy and the environment.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Molecules
Journal subject:
BIOLOGIA
Year:
2023
Type:
Article
Affiliation country:
China