Your browser doesn't support javascript.
loading
Responses of composition and metabolism of microbial communities during the remediation of black and odorous water using bioaugmentation and aeration.
Zhang, Dan; Lei, Yu; Wang, Chen; Lan, Shuhuan; Li, Xudong; Xie, Yifei.
Affiliation
  • Zhang D; CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
  • Lei Y; CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Wang C; CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
  • Lan S; CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Li X; CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
  • Xie Y; CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China. Electronic address: xieyf@cib.ac.cn.
Environ Res ; 243: 117895, 2024 Feb 15.
Article in En | MEDLINE | ID: mdl-38081350
This study elucidated the effect patterns of aeration and bioaugmentation on indigenous microbial communities, metabolites, and metabolic pathways in the remediation of black and odorous water. This is crucial for the precise formulation and targeted development of effective microbial consortia, as well as for tracking and forecasting the bioremediation of black and odorous water. The results confirmed that combining bioaugmentation with aeration markedly enhanced the degradation of COD, NH4+-N, and TN and the conversion of Fe and Mn. Aeration significantly increased the relative abundance of Flavobacterium and Diaphorobacter, and the positive interbacterial interaction in the effective microbial consortia EM31 gave the constituent strain Klebsiella and Bacillus a dominant niche in the bioaugmentation. Furthermore, bioaugmentation improved the capacity of the indigenous microbial consortia to utilize basic carbon source, particularly the utilization of L-glycerol, I-erythritol, glucose-1-phosphate, and the catabolism of cysteine and methionine. Moreover, during the remediation of black and odorous water by aeration and bioaugmentation, Glucosinolate biosynthesis (map00966), Steroid hormone biosynthesis (map00140), Folate biosynthesis (map00790), One carbon pool by folate (map00670), and Tyrosine metabolism (map00350) were identified as key functional metabolic pathways in microbial communities.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Water / Microbiota Language: En Journal: Environ Res Year: 2024 Type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Water / Microbiota Language: En Journal: Environ Res Year: 2024 Type: Article Affiliation country: China