Your browser doesn't support javascript.
loading
Structural Characteristics of PON1 with Leu55Met and Gln192Arg Variants Influencing Oxidative-Stress-Related Diseases: An Integrated Molecular Modeling and Dynamics Study.
M, Sudhan; V, Janakiraman; Ahmad, Sheikh F; Attia, Sabry M; Emran, Talha Bin; Patil, Rajesh B; Ahmed, Shiek S S J.
Affiliation
  • M S; Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
  • V J; Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
  • Ahmad SF; Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
  • Attia SM; Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
  • Emran TB; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
  • Patil RB; Legorreta Cancer Center, Brown University, Providence, RI 02912, USA.
  • Ahmed SSSJ; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh.
Medicina (Kaunas) ; 59(12)2023 Nov 22.
Article in En | MEDLINE | ID: mdl-38138163
ABSTRACT
Background and

Objectives:

PON1 is a multi-functional antioxidant protein that hydrolyzes a variety of endogenous and exogenous substrates in the human system. Growing evidence suggests that the Leu55Met and Gln192Arg substitutions alter PON1 activity and are linked with a variety of oxidative-stress-related diseases. Materials and

Methods:

We implemented structural modeling and molecular dynamics (MD) simulation along with essential dynamics of PON1 and molecular docking with their endogenous (n = 4) and exogenous (n = 6) substrates to gain insights into conformational changes and binding affinity in order to characterize the specific functional ramifications of PON1 variants.

Results:

The Leu55Met variation had a higher root mean square deviation (0.249 nm) than the wild type (0.216 nm) and Gln192Arg (0.202 nm), implying increased protein flexibility. Furthermore, the essential dynamics analysis confirms the structural change in PON1 with Leu55Met vs. Gln192Arg and wild type. Additionally, PON1 with Leu55Met causes local conformational alterations at the substrate binding site, leading to changes in binding affinity with their substrates.

Conclusions:

Our findings highlight the structural consequences of the variants, which would increase understanding of the role of PON1 in the pathogenesis of oxidative-stress-related diseases, as well as the management of endogenous and exogenous chemicals in the treatment of diseases.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Aryldialkylphosphatase Limits: Humans Language: En Journal: Medicina (Kaunas) Journal subject: MEDICINA Year: 2023 Type: Article Affiliation country: India

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Aryldialkylphosphatase Limits: Humans Language: En Journal: Medicina (Kaunas) Journal subject: MEDICINA Year: 2023 Type: Article Affiliation country: India