Your browser doesn't support javascript.
loading
Insights into neuroinflammatory mechanisms of deep brain stimulation in Parkinson's disease.
Eser, Pinar; Kocabicak, Ersoy; Bekar, Ahmet; Temel, Yasin.
Affiliation
  • Eser P; Bursa Uludag University School of Medicine, Department of Neurosurgery, Bursa, Turkey. Electronic address: pinarocak@uludag.edu.tr.
  • Kocabicak E; Ondokuz Mayis University, Health Practise and Research Hospital, Neuromodulation Center, Samsun, Turkey.
  • Bekar A; Bursa Uludag University School of Medicine, Department of Neurosurgery, Bursa, Turkey.
  • Temel Y; Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands.
Exp Neurol ; 374: 114684, 2024 Apr.
Article in En | MEDLINE | ID: mdl-38199508
ABSTRACT
Parkinson's disease, a progressive neurodegenerative disorder, involves gradual degeneration of the nigrostriatal dopaminergic pathway, leading to neuronal loss within the substantia nigra pars compacta and dopamine depletion. Molecular factors, including neuroinflammation, impaired protein homeostasis, and mitochondrial dysfunction, contribute to the neuronal loss. Deep brain stimulation, a form of neuromodulation, applies electric current through stereotactically implanted electrodes, effectively managing motor symptoms in advanced Parkinson's disease patients. Deep brain stimulation exerts intricate effects on neuronal systems, encompassing alterations in neurotransmitter dynamics, microenvironment restoration, neurogenesis, synaptogenesis, and neuroprotection. Contrary to initial concerns, deep brain stimulation demonstrates antiinflammatory effects, influencing cytokine release, glial activation, and neuronal survival. This review investigates the intricacies of deep brain stimulation mechanisms, including insertional effects, histological changes, and glial responses, and sheds light on the complex interplay between electrodes, stimulation, and the brain. This exploration delves into understanding the role of neuroinflammatory pathways and the effects of deep brain stimulation in the context of Parkinson's disease, providing insights into its neuroprotective capabilities.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Parkinson Disease / Deep Brain Stimulation Limits: Humans Language: En Journal: Exp Neurol / Exp. neurol / Experimental neurology Year: 2024 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Parkinson Disease / Deep Brain Stimulation Limits: Humans Language: En Journal: Exp Neurol / Exp. neurol / Experimental neurology Year: 2024 Type: Article