Your browser doesn't support javascript.
loading
Kaempferol induces apoptosis through the MAPK pathway and regulates JNK-mediated autophagy in MC-3 cells.
Jeon, Su-Ji; Jung, Gi-Hwan; Choi, Eun-Young; Han, Eun-Ji; Lee, Jae-Han; Han, So-Hee; Woo, Joong-Seok; Jung, Soo-Hyun; Jung, Ji-Youn.
Affiliation
  • Jeon SJ; Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea.
  • Jung GH; Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea.
  • Choi EY; Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea.
  • Han EJ; Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea.
  • Lee JH; Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea.
  • Han SH; Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea.
  • Woo JS; Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea.
  • Jung SH; Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea.
  • Jung JY; Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea.
Toxicol Res ; 40(1): 45-55, 2024 Jan.
Article in En | MEDLINE | ID: mdl-38223666
ABSTRACT
This study sought to determine the anticancer effect of kaempferol, a glycone-type flavonoid glycoside with various pharmacological benefits, on human oral cancer MC-3 cells. In vitro studies comprised a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, annexin V and propidium iodide staining, western blotting analysis, and acridine orange staining, while the in vivo studies entailed a xenograft model, hematoxylin and eosin staining, and TdT-mediated dUTP-biotin nick end labelling. In vitro, kaempferol reduced the rate of survival of MC-3 cells, mediated intrinsic apoptosis, increased the number of acidic vesicular organelles, and altered the expression of autophagy-related proteins. Further, treatment with the autophagy inhibitors revealed that the induced autophagy had a cytoprotective effect on apoptosis in kaempferol-treated MC-3 cells. Kaempferol also decreased the expression of phosphorylated extracellular signal-regulated kinase and increased that of phosphorylated c-Jun N-terminal kinase (p-JNK) and phosphorylated p38 kinase in MC-3 cells, suggesting the occurrence of mitogen-activated protein kinase-mediated apoptosis and JNK-mediated autophagy. In vivo, kaempferol reduced tumor growth inducing apoptosis and autophagy. These results showed that kaempferol has the potential use as an adjunctive agent in treating oral cancer.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Toxicol Res Year: 2024 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Toxicol Res Year: 2024 Type: Article