Your browser doesn't support javascript.
loading
Ethanol extracts of Isochrysis zhanjiangensis alleviate acute alcoholic liver injury and modulate intestinal bacteria dysbiosis in mice.
Wen, Yangmin; Zhou, Youcai; Tian, Li; He, Yongjin.
Affiliation
  • Wen Y; Department of basic medical science, Quanzhou Medical College, Quanzhou, China.
  • Zhou Y; School of Food and Biological Engineering, Fujian Polytechnic Normal University, Fuqing, China.
  • Tian L; Department of basic medical science, Quanzhou Medical College, Quanzhou, China.
  • He Y; College of Life Science, Fujian Normal University, Fuzhou, China.
J Sci Food Agric ; 104(7): 4354-4362, 2024 May.
Article in En | MEDLINE | ID: mdl-38318717
ABSTRACT

BACKGROUND:

Alcoholic liver disease (ALD) is responsible for 3.3 million deaths per annum. Efficacious therapeutic modalities or drug treatments for ALD have not yet been found, so it is urgent to seek new agents for preventing ALD and its related disease. Many experiments have indicated that modulating the gut microbiota and regulating the toll-like receptor 4 (TLR4)/nuclear transcription factor-κB (NF-κB) inflammatory pathway can provide a new target for prevention and treatment of ALD. Marine microalgae have their natural metabolic pathways to synthesize various of bioactive compounds as promising candidates for hepatoprotection. In this study, we investigated ethanol extracts from Isochrysis zhanjiangensis (EEIZ) to evaluate their ability to alleviate acute alcoholic liver injury, regulate TLR4/NF-κB inflammatory pathway and modulate intestinal bacteria dysbiosis in mice for ALD treatment.

RESULTS:

In the acute ALD mouse model, EEIZ reduced levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, triacylglyceride, total cholesterol and low-density lipoprotein, while increasing the level of high-density lipoprotein. Besides, TLR4, myeloid differentiation factor 88, NF-κB and tumor necrosis factor-α expression levels in liver tissue were effectively downregulated by EEIZ. Furthermore, treatment with EEIZ enhanced intestinal homeostasis and significantly alleviated the damage caused by alcohol.

CONCLUSION:

EEIZ showed effective hepatoprotective activity against alcohol-induced acute liver injury in mice as it could alleviate hepatocyte damage, suppress the TLR4/NF-κB inflammatory pathway and regulate the intestinal flora structure. EEIZ could be a good candidate for preventing acute alcoholic liver injury. © 2024 Society of Chemical Industry.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Haptophyta / Liver Diseases, Alcoholic Type of study: Prognostic_studies Limits: Animals Language: En Journal: J Sci Food Agric Year: 2024 Type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Haptophyta / Liver Diseases, Alcoholic Type of study: Prognostic_studies Limits: Animals Language: En Journal: J Sci Food Agric Year: 2024 Type: Article Affiliation country: China