Your browser doesn't support javascript.
loading
A 2D ferroelectric vortex pattern in twisted BaTiO3 freestanding layers.
Sánchez-Santolino, G; Rouco, V; Puebla, S; Aramberri, H; Zamora, V; Cabero, M; Cuellar, F A; Munuera, C; Mompean, F; Garcia-Hernandez, M; Castellanos-Gomez, A; Íñiguez, J; Leon, C; Santamaria, J.
Affiliation
  • Sánchez-Santolino G; GFMC, Departamento Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain. gsanchezsantolino@ucm.es.
  • Rouco V; Laboratorio de Heteroestructuras con aplicación en spintrónica, Unidad Asociada UCM/CSIC, Madrid, Spain. gsanchezsantolino@ucm.es.
  • Puebla S; GFMC, Departamento Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain. vrouco@ucm.es.
  • Aramberri H; Instituto de Ciencia de Materiales de Madrid ICMM-CSIC, Madrid, Spain.
  • Zamora V; Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg.
  • Cabero M; GFMC, Departamento Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain.
  • Cuellar FA; ICTS Centro Nacional de Microscopia Electrónica 'Luis Brú', Universidad Complutense, Madrid, Spain.
  • Munuera C; GFMC, Departamento Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain.
  • Mompean F; Laboratorio de Heteroestructuras con aplicación en spintrónica, Unidad Asociada UCM/CSIC, Madrid, Spain.
  • Garcia-Hernandez M; Instituto de Ciencia de Materiales de Madrid ICMM-CSIC, Madrid, Spain.
  • Castellanos-Gomez A; Laboratorio de Heteroestructuras con aplicación en spintrónica, Unidad Asociada UCM/CSIC, Madrid, Spain.
  • Íñiguez J; Instituto de Ciencia de Materiales de Madrid ICMM-CSIC, Madrid, Spain.
  • Leon C; Laboratorio de Heteroestructuras con aplicación en spintrónica, Unidad Asociada UCM/CSIC, Madrid, Spain.
  • Santamaria J; Instituto de Ciencia de Materiales de Madrid ICMM-CSIC, Madrid, Spain.
Nature ; 626(7999): 529-534, 2024 Feb.
Article in En | MEDLINE | ID: mdl-38356067
ABSTRACT
The wealth of complex polar topologies1-10 recently found in nanoscale ferroelectrics results from a delicate balance between the intrinsic tendency of the materials to develop a homogeneous polarization and the electric and mechanical boundary conditions imposed on them. Ferroelectric-dielectric interfaces are model systems in which polarization curling originates from open circuit-like electric boundary conditions, to avoid the build-up of polarization charges through the formation of flux-closure11-14 domains that evolve into vortex-like structures at the nanoscale15-17 level. Although ferroelectricity is known to couple strongly with strain (both homogeneous18 and inhomogeneous19,20), the effect of mechanical constraints21 on thin-film nanoscale ferroelectrics has been comparatively less explored because of the relative paucity of strain patterns that can be implemented experimentally. Here we show that the stacking of freestanding ferroelectric perovskite layers with controlled twist angles provides an opportunity to tailor these topological nanostructures in a way determined by the lateral strain modulation associated with the twisting. Furthermore, we find that a peculiar pattern of polarization vortices and antivortices emerges from the flexoelectric coupling of polarization to strain gradients. This finding provides opportunities to create two-dimensional high-density vortex crystals that would enable us to explore previously unknown physical effects and functionalities.

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Nature Year: 2024 Type: Article Affiliation country: Spain

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Nature Year: 2024 Type: Article Affiliation country: Spain