Your browser doesn't support javascript.
loading
Architecting N-doped Carbon Nanotube-Rich Carbon Nanofibers with Biomimetic Vine-Leaf-Whisker Structure as Robust Bifunctional Electrocatalysts for Rechargeable Zn-Air Batteries.
Wang, Minghui; Chen, Zihao; Song, Yuqian; Hu, Zunpeng; Song, Hanzhe; Dong, Senjie; Yuan, Ding.
Affiliation
  • Wang M; Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, PR China.
  • Chen Z; Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, PR China.
  • Song Y; Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, PR China.
  • Hu Z; Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, PR China.
  • Song H; Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, PR China.
  • Dong S; Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, PR China.
  • Yuan D; Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, PR China.
Inorg Chem ; 63(9): 4373-4384, 2024 Mar 04.
Article in En | MEDLINE | ID: mdl-38376825
ABSTRACT
Efficient and durable bifunctional catalysts toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are urgently desirable but challenging for rechargeable Zn-air batteries (ZABs), especially flexible wearable ZABs. Inspired by the vine-leaf-whisker structure in nature, we proposed a three-dimensional (3D) hierarchical bifunctional catalyst (denoted as Co-Fe-Zn@N-CNT/CNF) consisting of N-doped carbon nanotubes embedded with abundant CoFe alloy nanoparticles, leaf-shaped N-doped carbon nanoflakes, and porous carbon fibers for rechargeable ZABs. The special biomimetic structure provides a large specific surface area, allowing for high exposure of the active site and ensuring fast mass transport/charge transfer. The close combination of CoFe bimetallic alloys and N-doped carbon nanotubes delivers high electrocatalytic activity, while the coexistence of various active sites such as metal nanoparticles (NPs), metal-Nx, doped N species, and their synergistic interactions endows the catalysts with more active sites. As such, the Co-Fe-Zn@N-CNT/CNF catalyst achieves superior bifunctional catalytic activities for the ORR (a half-wave potential of 0.84 V) and the OER (an overpotential of 326 mV at 10 mA cm-2) in alkaline media, comparable to commercial Pt/C and RuO2. Remarkably, both aqueous and solid-state ZABs assembled with Co-Fe-Zn@N-CNT/CNF catalysts as air electrodes demonstrate excellent charging/discharging performance, high peak power density, and robust long-term cycling stability. More interestingly, the flexible ZAB performs well even under bending conditions, displaying satisfactory device stability and mechanical flexibility. This study presents a new collective morphological-composition-structural engineering strategy for exploiting the efficient bifunctional oxygen electrocatalysts, which is of great significance for high-performance rechargeable ZABs and wearable energy storage devices.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Inorg Chem Year: 2024 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Inorg Chem Year: 2024 Type: Article