Your browser doesn't support javascript.
loading
Multi-omics analysis reveals novel loci and a candidate regulatory gene of unsaturated fatty acids in soybean (Glycine max (L.) Merr).
Zhao, Xunchao; Zhan, Yuhang; Li, Kaiming; Zhang, Yan; Zhou, Changjun; Yuan, Ming; Liu, Miao; Li, Yongguang; Zuo, Peng; Han, Yingpeng; Zhao, Xue.
Affiliation
  • Zhao X; Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
  • Zhan Y; Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
  • Li K; Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
  • Zhang Y; Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
  • Zhou C; Daqing Branch, Heilongjiang Academy of Agricultural Science, Daqing, China.
  • Yuan M; Qiqihar Branch, Heilongjiang Academy of Agricultural Science, Qiqihar, China.
  • Liu M; Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China.
  • Li Y; Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
  • Zuo P; Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China. 634905@qq.com.
  • Han Y; Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China. hyp234286@aliyun.com.
  • Zhao X; Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China. xuezhao@neau.edu.cn.
Biotechnol Biofuels Bioprod ; 17(1): 43, 2024 Mar 16.
Article in En | MEDLINE | ID: mdl-38493136
ABSTRACT

BACKGROUND:

Soybean is a major oil crop; the nutritional components of soybean oil are mainly controlled by unsaturated fatty acids (FA). Unsaturated FAs mainly include oleic acid (OA, 181), linoleic acid (LLA, 182), and linolenic acid (LNA, 183). The genetic architecture of unsaturated FAs in soybean seeds has not been fully elucidated, although many independent studies have been conducted. A 3 V multi-locus random single nucleotide polymorphism (SNP)-effect mixed linear model (3VmrMLM) was established to identify quantitative trait loci (QTLs) and QTL-by-environment interactions (QEIs) for complex traits.

RESULTS:

In this study, 194 soybean accessions with 36,981 SNPs were calculated using the 3VmrMLM model. As a result, 94 quantitative trait nucleotides (QTNs) and 19 QEIs were detected using single-environment (QTN) and multi-environment (QEI) methods. Three significant QEIs, namely rs4633292, rs39216169, and rs14264702, overlapped with a significant single-environment QTN.

CONCLUSIONS:

For QTNs and QEIs, further haplotype analysis of candidate genes revealed that the Glyma.03G040400 and Glyma.17G236700 genes were beneficial haplotypes that may be associated with unsaturated FAs. This result provides ideas for the identification of soybean lipid-related genes and provides insights for breeding high oil soybean varieties in the future.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Biotechnol Biofuels Bioprod Year: 2024 Type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Biotechnol Biofuels Bioprod Year: 2024 Type: Article Affiliation country: China