High HIV diversity, recombination, and superinfection revealed in a large outbreak among persons who inject drugs in Kentucky and Ohio, USA.
Virus Evol
; 10(1): veae015, 2024.
Article
in En
| MEDLINE
| ID: mdl-38510920
ABSTRACT
We investigated transmission dynamics of a large human immunodeficiency virus (HIV) outbreak among persons who inject drugs (PWID) in KY and OH during 2017-20 by using detailed phylogenetic, network, recombination, and cluster dating analyses. Using polymerase (pol) sequences from 193 people associated with the investigation, we document high HIV-1 diversity, including Subtype B (44.6 per cent); numerous circulating recombinant forms (CRFs) including CRF02_AG (2.5 per cent) and CRF02_AG-like (21.8 per cent); and many unique recombinant forms composed of CRFs with major subtypes and sub-subtypes [CRF02_AG/B (24.3 per cent), B/CRF02_AG/B (0.5 per cent), and A6/D/B (6.4 per cent)]. Cluster analysis of sequences using a 1.5 per cent genetic distance identified thirteen clusters, including a seventy-five-member cluster composed of CRF02_AG-like and CRF02_AG/B, an eighteen-member CRF02_AG/B cluster, Subtype B clusters of sizes ranging from two to twenty-three, and a nine-member A6/D and A6/D/B cluster. Recombination and phylogenetic analyses identified CRF02_AG/B variants with ten unique breakpoints likely originating from Subtype B and CRF02_AG-like viruses in the largest clusters. The addition of contact tracing results from OH to the genetic networks identified linkage between persons with Subtype B, CRF02_AG, and CRF02_AG/B sequences in the clusters supporting de novo recombinant generation. Superinfection prevalence was 13.3 per cent (8/60) in persons with multiple specimens and included infection with B and CRF02_AG; B and CRF02_AG/B; or B and A6/D/B. In addition to the presence of multiple, distinct molecular clusters associated with this outbreak, cluster dating inferred transmission associated with the largest molecular cluster occurred as early as 2006, with high transmission rates during 2017-8 in certain other molecular clusters. This outbreak among PWID in KY and OH was likely driven by rapid transmission of multiple HIV-1 variants including de novo viral recombinants from circulating viruses within the community. Our findings documenting the high HIV-1 transmission rate and clustering through partner services and molecular clusters emphasize the importance of leveraging multiple different data sources and analyses, including those from disease intervention specialist investigations, to better understand outbreak dynamics and interrupt HIV spread.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Virus Evol
Year:
2024
Type:
Article
Affiliation country:
United States