Your browser doesn't support javascript.
loading
Competitive bio-augmentation overcoming unusual direct inhibitor inefficacy in mainstream nitrite-oxidizing bacteria suppression: Unveiling the underpinnings in microbial and nitrogen metabolism aspects.
Wei, Yanxiao; Ye, Min; Chen, Yujie; Li, Yu-You.
Affiliation
  • Wei Y; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
  • Ye M; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
  • Chen Y; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
  • Li YY; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aram
Sci Total Environ ; 926: 171900, 2024 May 20.
Article in En | MEDLINE | ID: mdl-38527552
ABSTRACT
The long-stabilized mainstream partial nitritation/Anammox (PN/A) process continues to encounter significant challenges from nitrite-oxidizing bacteria (NOB). Therefore, this study aimed to determine an efficient, rapid, and easily implementable strategy for inhibiting NOB. A laboratory-scale reactor was operated continuously for 325 days, experiencing NOB outbreak in mainstream and recovery with simulated sidestream support. The results show that direct inhibitory strategies including intermittent aeration and approximately 35 mg/L free ammonia had unusual weak inhibitory effects on NOB activity. Subsequently, the exogenous Anammox from sidestream employed as a competitive bio-augmentation approach rapidly inhibited NOB dynamics. Evidence suggests that the damaged hydroxyapatite granules under low pH conditions might have contributed to NOB dominance by diminishing Anammox bacteria activity, thereby creating a substrate-rich environment favoring NOB survival. In contrast, the introduction of exogenous Candidatus Kuenenia facilitated the nitrogen removal efficiency from 32.5 % to over 80 %. This coincided with a decrease in the relative abundance of Nitrospira from 16.5 % to 2.7 % and NOB activity from 0.34 to 0.07 g N/(g mixed liquor volatile suspended solid)/d. Metagenomic analysis reveals a decrease in the functional potential of most nitrite transport proteins, coupled with a significant increase in eukaryotic-like serine/threonine-protein kinase involved in cellular regulation, during the Anammox activity recovery. This study's findings reveal the feasibility of the bio-augmentation based on substrate competition, wherein sidestream processes support the mainstream PN/A integration, offering significant potential for practical applications.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ammonium Compounds / Nitrites Language: En Journal: Sci Total Environ Year: 2024 Type: Article Affiliation country: Japan

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ammonium Compounds / Nitrites Language: En Journal: Sci Total Environ Year: 2024 Type: Article Affiliation country: Japan