Your browser doesn't support javascript.
loading
The OTX2 Gene Induces Tumor Growth and Triggers Leptomeningeal Metastasis by Regulating the mTORC2 Signaling Pathway in Group 3 Medulloblastomas.
Ampudia-Mesias, Elisabet; Cameron, Charles S; Yoo, Eunjae; Kelly, Marcus; Anderson, Sarah M; Manning, Riley; Abrahante Lloréns, Juan E; Moertel, Christopher L; Yim, Hyungshin; Odde, David J; Saydam, Nurten; Saydam, Okay.
Affiliation
  • Ampudia-Mesias E; Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA.
  • Cameron CS; Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA.
  • Yoo E; Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA.
  • Kelly M; Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea.
  • Anderson SM; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
  • Manning R; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
  • Abrahante Lloréns JE; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
  • Moertel CL; University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN 55455, USA.
  • Yim H; Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA.
  • Odde DJ; Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea.
  • Saydam N; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
  • Saydam O; ExoMed Diagnostic, Minneapolis, MN 55404, USA.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in En | MEDLINE | ID: mdl-38674001
ABSTRACT
Medulloblastoma (MB) encompasses diverse subgroups, and leptomeningeal disease/metastasis (LMD) plays a substantial role in associated fatalities. Despite extensive exploration of canonical genes in MB, the molecular mechanisms underlying LMD and the involvement of the orthodenticle homeobox 2 (OTX2) gene, a key driver in aggressive MB Group 3, remain insufficiently understood. Recognizing OTX2's pivotal role, we investigated its potential as a catalyst for aggressive cellular behaviors, including migration, invasion, and metastasis. OTX2 overexpression heightened cell growth, motility, and polarization in Group 3 MB cells. Orthotopic implantation of OTX2-overexpressing cells in mice led to reduced median survival, accompanied by the development of spinal cord and brain metastases. Mechanistically, OTX2 acted as a transcriptional activator of the Mechanistic Target of Rapamycin (mTOR) gene's promoter and the mTORC2 signaling pathway, correlating with upregulated downstream genes that orchestrate cell motility and migration. Knockdown of mTOR mRNA mitigated OTX2-mediated enhancements in cell motility and polarization. Analysis of human MB tumor samples (N = 952) revealed a positive correlation between OTX2 and mTOR mRNA expression, emphasizing the clinical significance of OTX2's role in the mTORC2 pathway. Our results reveal that OTX2 governs the mTORC2 signaling pathway, instigating LMD in Group 3 MBs and offering insights into potential therapeutic avenues through mTORC2 inhibition.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Gene Expression Regulation, Neoplastic / Otx Transcription Factors / Mechanistic Target of Rapamycin Complex 2 / Medulloblastoma / Meningeal Neoplasms Limits: Animals / Female / Humans / Male Language: En Journal: Int J Mol Sci Year: 2024 Type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Gene Expression Regulation, Neoplastic / Otx Transcription Factors / Mechanistic Target of Rapamycin Complex 2 / Medulloblastoma / Meningeal Neoplasms Limits: Animals / Female / Humans / Male Language: En Journal: Int J Mol Sci Year: 2024 Type: Article Affiliation country: United States