Your browser doesn't support javascript.
loading
Phase Transition Control in Molecular Solids via Complementarity of Hydrogen-Bond Strength.
Du, Shan-Nan; Deng, Wei; Liu, Jia-Chuan; Chen, Yan-Cong; Yao, Chan-Ying; Zhou, Ying-Qian; Wu, Si-Guo; Liu, Jun-Liang; Tong, Ming-Liang.
Affiliation
  • Du SN; Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
  • Deng W; Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
  • Liu JC; Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
  • Chen YC; Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
  • Yao CY; Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
  • Zhou YQ; Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
  • Wu SG; Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
  • Liu JL; Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
  • Tong ML; Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
Chemistry ; 30(42): e202401395, 2024 Jul 25.
Article in En | MEDLINE | ID: mdl-38802980
ABSTRACT
Phase transitions in molecular solids involve synergistic changes in chemical and electronic structures, leading to diversification in physical and chemical properties. Despite the pivotal role of hydrogen bonds (H-bonds) in many phase-transition materials, it is rare and challenging to chemically regulate the dynamics and to elucidate the structure-property relationship. Here, four high-spin CoII compounds were isolated and systematically investigated by modifying the ligand terminal groups (X=S, Se) and substituents (Y=Cl, Br). S-Cl and Se-Br undergo a reversible structural phase transition near room temperature, triggering the rotation of 15-crown-5 guests and the swing between syn- and anti-conformation of NCX- ligands, accompanied by switchable magnetism. Conversely, S-Br and Se-Cl retain stability in ordered and disordered phases, respectively. H-bonds geometric analysis and ab initio calculations reveal that the electronegativity of X and Y affects the strength of NY-ap-H⋅⋅⋅X interactions. Entropy-driven structural phase transitions occur when the H-bond strength is appropriate; otherwise, the phase stays unchanged if it is too strong or weak. This work highlights a phase transition driven by H-bond strength complementarity - pairing strong acceptor with weak donor and vice versa, which offers a straightforward and effective approach for designing phase-transition molecular solids from a chemical perspective.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Chemistry Journal subject: QUIMICA Year: 2024 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Chemistry Journal subject: QUIMICA Year: 2024 Type: Article